Cómo juntar términos semejantes en una ecuación
Cuando los alumnos de 3º curso en adelante aprenden inicialmente a sumar, restar, multiplicar, dividir y trabajar con expresiones numéricas básicas, empiezan realizando operaciones con dos números. Pero, ¿qué ocurre cuando una expresión requiere varias operaciones? ¿Se suma o se multiplica primero, por ejemplo? ¿Y multiplicar o dividir? Este artículo explica qué es el orden de las operaciones y te da ejemplos que también puedes utilizar con los alumnos. También proporciona dos lecciones que te ayudarán a introducir y desarrollar el concepto.
El orden de las operaciones es un ejemplo de matemáticas muy procedimental. Es fácil meter la pata porque es menos un concepto que se domina y más una lista de reglas que hay que memorizar. Pero no te engañes pensando que las habilidades procedimentales no pueden ser profundas. Puede presentar problemas difíciles, apropiados para alumnos mayores, y que dan pie a discusiones en clase:
A lo largo del tiempo, los matemáticos se han puesto de acuerdo en un conjunto de reglas llamado orden de operaciones para determinar qué operación hay que hacer primero. Cuando una expresión sólo incluye las cuatro operaciones básicas, éstas son las reglas:
Principio de adición de la multiplicación
En general, nadie quiere ser malinterpretado. En matemáticas, es tan importante que los lectores entiendan las expresiones exactamente de la forma en que el escritor pretendía que las matemáticas establecen convenciones, reglas acordadas, para interpretar las expresiones matemáticas.
Para evitar estas y otras posibles ambigüedades, las matemáticas han establecido convenciones (acuerdos) sobre la forma de interpretar las expresiones matemáticas. Una de estas convenciones establece que cuando todas las operaciones son iguales, se procede de izquierda a derecha, por lo que 10 – 5 – 3 = 2, por lo que un escritor que quisiera la otra interpretación tendría que escribir la expresión de forma diferente: 10 – (5 – 2). Cuando las operaciones no son iguales, como en 2 + 3 × 10, se puede dar preferencia a unas sobre otras. En particular, la multiplicación se realiza antes que la suma, independientemente de cuál aparezca primero al leer de izquierda a derecha. Por ejemplo, en 2 + 3 × 10, la multiplicación debe realizarse primero, aunque aparezca a la derecha de la suma, y la expresión signifique 2 + 30.
Resolver utilizando la calculadora de principios de adición y multiplicación
Parece que la respuesta depende de la forma en que se mire el problema. Pero no podemos tener este tipo de flexibilidad en las matemáticas; las matemáticas no funcionan si no puedes estar seguro de la respuesta, o si se puede calcular exactamente la misma expresión para llegar a dos o más respuestas diferentes.
Para eliminar esta confusión, tenemos unas reglas de precedencia, establecidas al menos desde el año 1500, llamadas “orden de las operaciones”. Las “operaciones” son la suma, la resta, la multiplicación, la división, la exponenciación y la agrupación; el “orden” de estas operaciones establece qué operaciones tienen prioridad (se ocupan) antes que otras.
Una técnica habitual para recordar el orden de las operaciones es la abreviatura (o, más bien, el “acrónimo”) “PEMDAS”, que se convierte en la frase nemotécnica “Please Excuse My Dear Aunt Sally”. Esta frase significa, y ayuda a recordar el orden de “Paréntesis, Exponentes, Multiplicación y División, y Adición y Sustracción”. Este listado indica el rango de las operaciones: Los paréntesis superan a los exponentes, que superan a la multiplicación y la división (pero la multiplicación y la división están en el mismo rango), y la multiplicación y la división superan a la suma y la resta (que están juntas en el rango inferior). En otras palabras, la precedencia es:
Cómo hacer una ecuación con infinitas soluciones
-490Paso a paso La negrita roja es cada paso completado. Entrada La ecuación se puede reescribir: = (10+5^2)*((5*-2)+9-3^3)/2= (10+25)*((5*-2)+9-3^3)/2= (35)*((5*-2)+9-3^3)/2= 35*((5*-2)+9-3^3)/2= 35*((-10)+9- 3^3)/2= 35*(-10+9-3^3)/2= 35*(-10+9-27)/2= 35*(-1-27)/2= 35*(-28)/2= 35*-28/2= -980/2= -490PEMDAS Y BEDMAS Precaución
Resuelve problemas matemáticos utilizando el orden de las operaciones como PEMDAS, BEDMAS, BODMAS, GEMDAS y MDAS. (Precaución PEMDAS) Esta calculadora resuelve ecuaciones matemáticas que suman, restan, multiplican y dividen números positivos y negativos y números exponenciales. También puede incluir paréntesis y números con exponentes o raíces en sus ecuaciones.
Puedes intentar copiar ecuaciones de otras fuentes impresas y pegarlas aquí y, si utilizan ÷ para la división y × para la multiplicación, esta calculadora de ecuaciones intentará convertirlas a / y * respectivamente, pero en algunos casos puede que tengas que volver a escribir los símbolos copiados y pegados o incluso ecuaciones completas.
Si quieres que una entrada como 1/2 sea tratada como una fracción, introdúcela como (1/2). Por ejemplo, en la ecuación 4 dividida por ½ debes introducirla como 4/(1/2). Entonces la división 1/2 = 0,5 se realiza primero y 4/0,5 = 8 se realiza al final. Si lo introduces incorrectamente como 4/1/2 entonces se resuelve 4/1 = 4 primero y 4/2 = 2 al final. 2 es una respuesta incorrecta. 8 es la respuesta correcta.