Saltar al contenido

Como hacer ecuaciones de primer y segundo grado

junio 3, 2022

Ejercicios de ecuaciones de primer grado pdf

Las ecuaciones que implican incógnitas elevadas a una potencia de uno se conocen como ecuaciones de primer grado. También existen ecuaciones de segundo grado que implican al menos una variable elevada al cuadrado o a una potencia de dos. Las ecuaciones también pueden ser de tercer grado, de cuarto grado, etc. La ecuación de segundo grado más famosa es la ecuación cuadrática, que tiene la forma general ax2 +bx +c = 0; donde a, b y c son constantes y a no es igual a 0. La solución de este tipo de ecuación puede encontrarse a menudo mediante un método conocido como factorización.

Dado que la ecuación cuadrática es el producto de dos ecuaciones de primer grado, se puede factorizar en estas ecuaciones. Por ejemplo, el producto de las dos expresiones (x + 2)(x – 3) nos proporciona la expresión cuadrática x2 – x – 6. Las dos expresiones (x + 2) y (x – 3) se llaman factores de la expresión cuadrática x2 – x – 6. Al establecer cada factor de una ecuación cuadrática igual a cero, se pueden obtener soluciones. En esta ecuación cuadrática, las soluciones son x = -2 y x = 3.

Ecuación general de segundo grado pdf

Este artículo trata sobre las ecuaciones algebraicas de grado dos y sus soluciones. Para la fórmula utilizada para encontrar soluciones a tales ecuaciones, véase Fórmula cuadrática. Para funciones definidas por polinomios de grado dos, véase Función cuadrática.

término. Los números a, b y c son los coeficientes de la ecuación y pueden distinguirse llamándolos, respectivamente, coeficiente cuadrático, coeficiente lineal y término constante o libre[1].

Los valores de x que satisfacen la ecuación se denominan soluciones de la misma, y raíces o ceros de la expresión en su lado izquierdo. Una ecuación cuadrática tiene como máximo dos soluciones. Si sólo hay una solución, se dice que es una raíz doble. Si todos los coeficientes son números reales, hay dos soluciones reales, o una única raíz doble real, o dos soluciones complejas. Una ecuación cuadrática siempre tiene dos raíces, si se incluyen las raíces complejas; y una raíz doble se cuenta por dos. Una ecuación cuadrática se puede descomponer en una ecuación equivalente

Cómo resolver ecuaciones de primer grado

Las ecuaciones cuadráticas son expresiones algebraicas de segundo grado y son de la forma ax2 + bx + c = 0. La palabra “cuadrática” deriva de la palabra “Quad” que significa cuadrado. En otras palabras, una ecuación cuadrática es una “ecuación de grado 2”. Hay muchos escenarios en los que se utiliza una ecuación cuadrática. ¿Sabías que cuando se lanza un cohete, su trayectoria se describe mediante una ecuación cuadrática? Además, una ecuación cuadrática tiene numerosas aplicaciones en física, ingeniería, astronomía, etc.

Las ecuaciones cuadráticas son ecuaciones de segundo grado en x que tienen como máximo dos respuestas para x. Estas dos respuestas para x también se llaman raíces de las ecuaciones cuadráticas y se designan como (α, β). Aprenderemos más sobre las raíces de una ecuación cuadrática en el siguiente contenido.

Una ecuación cuadrática es una ecuación algebraica de segundo grado en x. La ecuación cuadrática en su forma estándar es ax2 + bx + c = 0, donde a y b son los coeficientes, x es la variable y c es el término constante. La primera condición para que una ecuación sea cuadrática es que el coeficiente de x2 sea un término distinto de cero (a ≠0). Para escribir una ecuación cuadrática en forma estándar, se escribe primero el término de x2, seguido del término de x y, por último, se escribe el término constante. Los valores numéricos de a, b, c generalmente no se escriben como fracciones o decimales sino que se escriben como valores integrales.

Calculadora de ecuaciones de primer grado

y varios términos y/o constantes. Factorizar un polinomio significa descomponer la expresión en expresiones más pequeñas que se multiplican entre sí. Estas habilidades son de Álgebra I y superiores, y pueden ser difíciles de entender si tus habilidades matemáticas no están a este nivel.

Si tienes un polinomio bastante sencillo, puede que seas capaz de averiguar los factores tú mismo sólo con la vista. Por ejemplo, después de practicar, muchos matemáticos son capaces de saber que la expresión 4×2 + 4x + 1 tiene los factores (2x + 1) y (2x + 1) sólo por haberla visto tanto. (Obviamente, esto no será tan fácil con polinomios más complicados). Para este ejemplo, vamos a utilizar una expresión menos común:

Este método identificará todos los posibles factores de los términos a y c y los utilizará para averiguar cuáles deben ser los factores. Si los números son muy grandes o si otros métodos de tipo adivinatorio parecen llevar demasiado tiempo, utiliza este método[3].

Si te permiten usar una, una calculadora gráfica facilita mucho el proceso de factorización, especialmente en los exámenes estandarizados. Estas instrucciones son para una calculadora gráfica TI. Utilizaremos la ecuación de ejemplo:

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad