Solucionador de ecuaciones en línea
=−2×2+1×1+1×(−2)−2×0+1×1+1×4−2×1+1×(−2)+1×(−2)−15×2+8×1+5×(−2)−15×0+8×1+5×4−15×1+8×(−2)+5×(−2)6×2+(−3)×1+(−2)×(−2)6×0+(−3)×1+(−2)×46×1+(−3)×(−2)+(−2)×(−2)=−55−6−3228−4113−1116. En el ejemplo anterior, hemos resuelto una ecuación matricial utilizando la inversa de una matriz. Sin embargo, nos dieron la inversa de la matriz 3×3,
resolver una ecuación matricial dada.Ejemplo 2: Resolver una ecuación matricial encontrando la inversa de una matrizResolver 1-1-111-1110=9-116 usando la inversa de una matriz.Respuesta En este ejemplo, necesitamos resolver una ecuación matricial. Para resolverla
La regla de Cramer
Sus tres ecuaciones describen tres planos que podrían intersecarse en un punto (a, b, c) . Gil Strang hace un magnífico trabajo presentando la idea en la primera clase de su curso de álgebra lineal. Un algoritmo para encontrar la derecha (a, b, c) es la eliminación gaussiana, que se trata en la tercera clase.
Los elementos de la última columna corresponden a los valores de a y b en los que (quizás) se cruzan las líneas. Llegaremos a ello transformando paulatinamente cada columna de la matriz original para que coincida con su RREF.
Eso introducirá en el camino algunas divisiones por las constantes, por lo que tu programa debe probar si estas divisiones son 0, en cuyo caso significa que no hay ninguna o un número infinito de soluciones a tus 3 ecuaciones.
Resolver un sistema de 5 ecuaciones
Este es el tercero de nuestra serie de artículos breves en los que se tratan temas importantes para los técnicos en electrónica y electromecánica y para los estudiantes de técnico que se preparan para el mercado laboral actual. En esta serie, discutiremos algunas habilidades y temas cotidianos para los técnicos en ejercicio, así como algunas áreas que han sido identificadas como “difíciles de entender” por nuestros estudiantes de técnico al realizar análisis de circuitos generales. Los temas de discusión incluirán técnicas de reducción de circuitos, respuestas transitorias, así como áreas de dificultad cuando se trabaja con teoremas de redes lineales de corriente continua.
Muchos técnicos encuentran dificultades para resolver ecuaciones de nodos o bucles que contienen múltiples cantidades desconocidas. En esta tercera entrega de la Serie de Técnicos en Práctica, revisaremos un medio para resolver tales ecuaciones para obtener las corrientes de bucle o los voltajes de nodo al realizar el análisis de la red de CC lineal. Los dos métodos de nivel técnico para resolver ecuaciones simultáneas con múltiples incógnitas que se utilizan cuando se trata de dos o tres ecuaciones son la “sustitución” y la “eliminación”. Para resolver un número determinado de incógnitas, requerimos que se proporcione el mismo número de ecuaciones. Por ejemplo, necesitaríamos dos ecuaciones para resolver dos incógnitas. Para resolver tres incógnitas se necesitan tres ecuaciones, y así sucesivamente.
Método de eliminación
En este apartado ampliaremos nuestro trabajo de resolución de un sistema de ecuaciones lineales. Hasta ahora hemos trabajado con sistemas de ecuaciones con dos ecuaciones y dos variables. Ahora trabajaremos con sistemas de tres ecuaciones con tres variables. Pero primero vamos a repasar lo que ya sabemos sobre la resolución de ecuaciones y sistemas que implican hasta dos variables.
Antes aprendimos que la gráfica de una ecuación lineal es una recta. Cada punto de la recta, un par ordenado, es una solución de la ecuación. Para un sistema de dos ecuaciones con dos variables, graficamos dos rectas. Entonces podemos ver que todos los puntos que son soluciones de cada ecuación forman una recta. Y, al encontrar lo que las rectas tienen en común, encontraremos la solución del sistema.
La mayoría de las ecuaciones lineales en una variable tienen una solución, pero vimos que algunas ecuaciones, llamadas contradictorias, no tienen soluciones y para otras ecuaciones, llamadas identidades, todos los números son soluciones
Para resolver un sistema de tres ecuaciones lineales, queremos encontrar los valores de las variables que son soluciones de las tres ecuaciones. En otras palabras, buscamos el triple ordenado que hace que las tres ecuaciones sean verdaderas. Estas son las soluciones del sistema de tres ecuaciones lineales con tres variables.