Saltar al contenido

Ecuaciones de 2do grado

junio 9, 2022

Resolución de ecuaciones cuadráticas

Una ecuación cuadrática es una ecuación polinómica de segundo grado. La forma general de este tipo de ecuación es: `ax^2 + bx + c = 0`. La constante `a` se llama coeficiente cuadrático y no puede ser cero (si no sería una ecuación lineal). La constante `b` recibe la denominación de coeficiente lineal. Por último, la constante `c` se conoce como coeficiente constante o término independiente. Si la ecuación de segundo grado no tiene las constantes `b` o `c`, se llama ecuación cuadrática incompleta, de lo contrario será una ecuación completa.

Su gráfica es una parábola y describe el movimiento de una pelota de baloncesto hacia la canasta. Pero te preguntarás: ¿qué importancia tiene ese cálculo? Aparentemente tiene poca importancia. Sin embargo, en lugar de pensar en una pelota de baloncesto, si pensamos en la trayectoria de una bala de cañón hasta llegar al campo enemigo, eso lo cambia todo. En cuanto al último ejemplo, es esencial que consigas calcular con precisión el lugar donde la bala causará daño, para no desperdiciar proyectiles o, peor aún, para no golpear a nuestros aliados.

Ejercicios de ecuaciones de segundo grado

Simplificando la ecuación llegamos a que es verdadera todo el tiempo, no depende del valor de , por lo que no importa el valor de la ecuación siempre es verdadera, y como tiene infinitos valores posibles tenemos infinitas soluciones para esta ecuación.

Elegimos 2 valores de y obtenemos el valor respectivo de y luego graficamos los dos puntos en un plano y el nuevo trazamos la recta que pasa por los dos puntos, y la coordenada del punto de intersección de la recta y el eje x es la solución de la ecuación.

Llamamos ecuación de segundo grado, a toda ecuación con la forma estándar con , y siendo números reales y distintos de cero. Se llama ecuación de segundo grado porque la mayor potencia de en esta ecuación es 2 (es decir ).

Ahora la resolución es sencilla ya que tenemos el producto de dos de primer grado igual a cero entonces sabemos con seguridad que o el primer término del producto es igual a cero o el segundo es igual a cero, lo que significa que o , resolvemos cada término de primer grado del lado izquierdo, obtenemos:

Ecuación cuadrática

Este artículo trata sobre las ecuaciones algebraicas de grado dos y sus soluciones. Para la fórmula utilizada para encontrar las soluciones de dichas ecuaciones, véase Fórmula cuadrática. Para funciones definidas por polinomios de grado dos, véase Función cuadrática.

término. Los números a, b y c son los coeficientes de la ecuación y pueden distinguirse llamándolos, respectivamente, coeficiente cuadrático, coeficiente lineal y término constante o libre[1].

Los valores de x que satisfacen la ecuación se denominan soluciones de la misma, y raíces o ceros de la expresión en su lado izquierdo. Una ecuación cuadrática tiene como máximo dos soluciones. Si sólo hay una solución, se dice que es una raíz doble. Si todos los coeficientes son números reales, hay dos soluciones reales, o una única raíz doble real, o dos soluciones complejas. Una ecuación cuadrática siempre tiene dos raíces, si se incluyen las raíces complejas; y una raíz doble se cuenta por dos. Una ecuación cuadrática se puede factorizar en una ecuación equivalente

Solucionador de ecuaciones de 2º grado

h, b, g, f y c son constantes. Si a = b(≠ 0 ) y h = 0, entonces la ecuación anterior se convierte enax\(^{2}\) + ay(^{2}\) + 2gx + 2fy + c = 0⇒ x\(^{2}\) + y\(^{2}\) + 2 ∙ \frac{g}{a}\) x + 2 ∙ \frac{a}\) y + \frac{c}{a}\) = 0,  (Ya que, a ≠ 0)⇒ x(^{2}\N) + 2 ∙ x ∙ \N(\frac{g}{a}\N) + \N(\frac{g^{2}\Na^{2}}) + y(^{2}\N) + 2. y . \(\frac{f}{a}) + \(\frac{{2}}{a^{2}}) = \(\frac{g^{2}}{a^{2}}) + \(\frac{{2}}{a^{2}}) – \(x + \frac{g} {a}))\frac(^2}) + (y + \frac{f} {a}))\frac(^2}) = \frac{1} {a}}cuadrado{g^2} + f^{2} – ca})^{2})

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad