Skip to content

Ecuaciones de primer grado sencillas

junio 8, 2022

Ecuación de primer grado en dos variables

Las ecuaciones son de primer grado cuando pueden escribirse en la forma ax + b = c, donde x es una variable y a, b y c son constantes conocidas y a a!=0. Discutimos las técnicas para resolver ecuaciones de primer grado en la sección 3.4 y de nuevo en la sección 3.5 al tratar con fórmulas. Además, encontrar las soluciones a las proporciones discutidas en las secciones 6.6 y 6.7 implica resolver ecuaciones de primer grado.

Este tema es uno de los más básicos e importantes para cualquier estudiante principiante de álgebra y se presenta de nuevo aquí para reforzarlo positivamente y como preparación para resolver una variedad de aplicaciones en las secciones 7.3, 7.4 y 7.5.

Hay exactamente una solución para una ecuación de primer grado en una variable. Esta afirmación puede demostrarse por el método de la contradicción. La prueba no se da aquí. Las ecuaciones que tienen más de una solución se discutirán en los capítulos 8, 9 y 10.

Esta última técnica tiene la ventaja de dejar sólo los coeficientes enteros y las constantes. Si hay más de una fracción, entonces cada término debe ser multiplicado por el LCM de los denominadores de las fracciones.

Ejercicios de ecuaciones de primer grado pdf

Una ecuación de primer grado es aquella que, reducida a su forma más simple, contiene la letra o letras desconocidas elevadas sólo a la primera potencia. Así, las ecuaciones 5x -7=18 y 3x + 5x -2 = 34 -x son ecuaciones de primer grado. La ecuación 2×2 + 7 x -3x -2×2 = 28, tal como está escrita, no parece una ecuación de primer grado, ya que contiene la incógnita elevada a la segunda potencia. Sin embargo, cuando se escribe en la forma más simple juntando los términos iguales, los dos términos x2 desaparecen y la ecuación se reduce a 4x = 28. Por tanto, esta ecuación es de primer grado.

Ya hemos aprendido a resolver ecuaciones de primer grado sumando, restando, multiplicando o dividiendo ambos miembros de la ecuación por el mismo número. En estas páginas seguiremos aplicando estos métodos para resolver ecuaciones; sin embargo, ahora resolveremos ecuaciones que pueden contener tanto números negativos como positivos. Además, aprenderemos algunos “atajos” que nos facilitarán el trabajo.

Enunciemos una vez más los cuatro principios que hemos aplicado en la resolución de ecuaciones. Estos principios se aplican tanto a las ecuaciones que contienen números negativos como a las que contienen números positivos. Estos principios se denominan axiomas. Un axioma es una afirmación que se acepta sin pruebas.

Ejemplos de ecuaciones de primer grado en una variable

Parece que estás usando Internet Explorer 11 o anterior. Este sitio web funciona mejor con navegadores modernos como las últimas versiones de Chrome, Firefox, Safari y Edge. Si continúas con este navegador, puedes ver resultados inesperados.

Recuerda que una ecuación algebraica es igual que una expresión algebraica, pero además contiene un signo de igualdad (\(=\)). Por ejemplo, \(5 + d\) es una expresión algebraica, mientras que \(5 + d = 10\) es una ecuación algebraica. Un tipo particular de ecuación algebraica es la ecuación lineal, o ecuación de primer grado:

Cuando una ecuación lineal sólo contiene una variable, podemos determinar el valor de esa variable y, por tanto, resolver la ecuación reordenándola de forma que la variable esté por sí misma en un lado del signo de igualdad. Por ejemplo, para resolver la ecuación \(c + 2 = 5\) sólo hay que poner \(c\) por sí misma a un lado del signo de igualdad.

Ten en cuenta que también puedes resolver ecuaciones lineales con más de una variable, pero esto requiere que tengas el mismo número de ecuaciones que de variables. Hacer esto se conoce como resolver ecuaciones simultáneas, pero esto no se cubre aquí (si estás interesado en aprender cómo hacerlo, un ejemplo de una página que podría encontrar útil es https://www.mathsisfun.com/algebra/systems-linear-equations.html).

Resolución de ecuaciones de primer grado en una variable

Una ecuación de primer grado es aquella que, reducida a su forma más simple, contiene la letra o letras desconocidas elevadas sólo a la primera potencia. Así, las ecuaciones 5x -7=18 y 3x + 5x -2 = 34 -x son ecuaciones de primer grado. La ecuación 2×2 + 7 x -3x -2×2 = 28, tal como está escrita, no parece una ecuación de primer grado, ya que contiene la incógnita elevada a la segunda potencia. Sin embargo, cuando se escribe en la forma más simple juntando los términos iguales, los dos términos x2 desaparecen y la ecuación se reduce a 4x = 28. Por tanto, esta ecuación es de primer grado.

Ya hemos aprendido a resolver ecuaciones de primer grado sumando, restando, multiplicando o dividiendo ambos miembros de la ecuación por el mismo número. En estas páginas seguiremos aplicando estos métodos para resolver ecuaciones; sin embargo, ahora resolveremos ecuaciones que pueden contener tanto números negativos como positivos. Además, aprenderemos algunos “atajos” que nos facilitarán el trabajo.

Enunciemos una vez más los cuatro principios que hemos aplicado en la resolución de ecuaciones. Estos principios se aplican tanto a las ecuaciones que contienen números negativos como a las que contienen números positivos. Estos principios se denominan axiomas. Un axioma es una afirmación que se acepta sin pruebas.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad