Ejemplos de ecuaciones diferenciales homogéneas de primer orden
Parece que estás en un dispositivo con un ancho de pantalla “estrecho” (es decir, probablemente estás en un teléfono móvil). Debido a la naturaleza de las matemáticas de este sitio, es mejor verlo en modo horizontal. Si su dispositivo no está en modo apaisado, muchas de las ecuaciones se saldrán por el lado de su dispositivo (debería poder desplazarse para verlas) y algunos de los elementos del menú quedarán cortados debido al estrecho ancho de la pantalla.
Al igual que con las ecuaciones diferenciales de segundo orden, no podemos resolver una ecuación diferencial no homogénea a menos que podamos resolver primero la ecuación diferencial homogénea. También tendremos que limitarnos a las ecuaciones diferenciales de coeficiente constante, ya que la resolución de ecuaciones diferenciales de coeficiente no constante es bastante difícil, por lo que no las trataremos aquí. Asimismo, sólo estudiaremos las ecuaciones diferenciales lineales.
Ahora, supongamos que las soluciones a esta ecuación diferencial será en la forma \ ~(y\left( t \right) = {\bf{e}^{r\,t}}) y enchufe esto en la ecuación diferencial y con un poco de simplificación obtenemos,
Ecuación homogénea de segundo orden
se convierte en una ecuación separable trasladando el origen del sistema de coordenadas al punto de intersección de las rectas dadas. Si estas rectas son paralelas, la ecuación diferencial se transforma en ecuación separable utilizando el cambio de variable:
Es fácil ver que los polinomios \(P\left( {x,y} \right)\N y \(Q\left( {x,y} \right),\N respectivamente, en \N(dx\) y \N(dy,\N) son funciones homogéneas de primer orden. Por lo tanto, la ecuación diferencial original también es homogénea.
\N-[int {\frac{{du}} {{u\left( {\ln u – 1} \right)}} = \int {\frac{{dx}}{x}} \N – Flecha derecha \N -int {{frac} {{izquierda( {ln u} {derecha)}} {{ln u – 1}} = \int {{frac} {{x}} {x} .\N – Flecha derecha \N -int {\frac( {ln u – 1} \ derecha)}{{ln u – 1}} = \int {\frac{dx}{x}} .\]
\[\ln\left| {\ln u – 1} \N – derecha = \ln \ln izquierda| x \ln derecha| + \ln {C_1},\; \ln flecha derecha \ln izquierda| {\ln u – 1} \right| = \ln \left| {{C_1}x} \right|,\\\\️; \rightarrow \ln u – 1 = \pm {C_1}x,\️; \rightarrow \ln u = 1 \pm {C_1}x;\️; \text{or};\️;u = {e^{1 \pm {C_1}x}.\️]
Solución de ecuaciones diferenciales lineales de primer orden
En primer lugar, observe que la pregunta no ha especificado que la ecuación deba resolverse por sustitución. Aquí es aconsejable dedicar unos instantes a pensar en el método más adecuado para resolver la ecuación.
En este caso la ecuación no se puede separar, por lo que no se puede resolver separando y luego integrando directamente. Como hay un $y^2$ en el lado derecho tampoco se puede poner en forma de problema de factor integrador.
y la ecuación se convierte en \N – Comienzo. \frac{1}{frac{y}{x} – 1} &= \ln\left(Dx^{left(\frac{1}{2}\right)}\right), \\ y &= x | 1 &= \frac{1}{ln\}{ln}izquierda(Dx^{1}{2}{right)}{right)} \frac{y}{x} &= 1 + \frac{1}{ln\}{ln\}{dx^{1}{2}{right)}{right)}, y &= x \\NIzquierda( 1 + \frac{1}{ln\\NIzquierda(Dx^ {Izquierda(\frac{1}{2} \NDerecha)} \NDerecha). \fin {align}
Calculadora de ecuaciones diferenciales homogéneas de primer orden
Una ecuación diferencial homogénea es una ecuación que contiene una diferenciación y una función, con un conjunto de variables. La función f(x, y) en una ecuación diferencial homogénea es una función homogénea tal que f(λx, λy) = λnf(x, y), para cualquier constante no nula λ. La forma general de una ecuación diferencial homogénea es f(x, y).dy + g(x, y).dx = 0.
Una ecuación diferencial que contiene una función homogénea se llama ecuación diferencial homogénea. La función f(x, y) se llama función homogénea si f(λx, λy) = λnf(x, y), para cualquier constante no nula λ. La forma general de la ecuación diferencial homogénea es de la forma f(x, y).dy + g(x, y).dx = 0. La ecuación diferencial homogénea tiene el mismo grado para las variables x, y dentro de la ecuación.
La ecuación diferencial homogénea no tiene un término constante dentro de la ecuación. La ecuación diferencial lineal tiene un término constante. La solución de una ecuación diferencial lineal es posible si somos capaces de eliminar el término constante de la ecuación diferencial lineal y transformarla en una ecuación diferencial homogénea. Además, la ecuación diferencial homogénea no tiene las variables x, y dentro de ninguna función especial como las funciones logarítmicas, o trigonométricas.