Resolver problemas de palabras con dos incógnitas
En un “sistema de ecuaciones”, se te pide que resuelvas dos o más ecuaciones al mismo tiempo. Cuando éstas tienen dos variables diferentes, como x e y, o a y b, puede ser complicado a primera vista ver cómo resolverlas. Afortunadamente, una vez que sabes lo que hay que hacer, todo lo que necesitas son conocimientos básicos de álgebra (y a veces algunos conocimientos de fracciones) para resolver el problema. Si eres un estudiante visual o si tu profesor te lo pide, aprende también a representar gráficamente las ecuaciones. La gráfica puede ser útil para “ver lo que está pasando” o para comprobar tu trabajo, pero puede ser más lenta que los otros métodos, y no funciona bien para todos los sistemas de ecuaciones.
Resumen del artículoPara resolver sistemas de ecuaciones algebraicas que contengan dos variables, empieza por mover las variables a diferentes lados de la ecuación. Luego, divide ambos lados de la ecuación por una de las variables para resolver esa variable. A continuación, toma ese número y mételo en la fórmula para resolver la otra variable. Por último, toma tu respuesta y ponla en la ecuación original para resolver la otra variable. Para aprender a resolver sistemas de ecuaciones algebraicas mediante el método de eliminación, desplázate hacia abajo.
Resolver un problema de palabras con dos incógnitas calculadora
Resolver la solución de dos variables de la ecuación del sistema que lleva para los problemas de palabras en las ecuaciones lineales simultáneas es el par ordenado (x, y) que satisface las dos ecuaciones lineales.Problemas de diferentes problemas con la ayuda de ecuaciones simultáneas lineales:Ya hemos aprendido los pasos de la formación de ecuaciones simultáneas de problemas matemáticos y diferentes métodos de resolución de ecuaciones simultáneas. En relación con cualquier problema, cuando tenemos que encontrar los valores de dos cantidades desconocidas, asumimos las dos cantidades desconocidas como x, y o cualquier otro símbolo algebraico. Entonces formamos la ecuación de acuerdo con la condición o condiciones dadas y resolvemos las dos ecuaciones simultáneas para encontrar los valores de las dos cantidades desconocidas. Así, podemos resolver el problema.
3. Si se suma 2 al numerador y al denominador se convierte en 9/10 y si se resta 3 al numerador y al denominador se convierte en 4/5. Halla las fracciones. Solución: Sea la fracción x/y. Si se añade 2 al numerador y al denominador la fracción se convierte en 9/10 por lo que tenemos(x + 2)/(y + 2) = 9/10
Resolver un problema de palabras con dos incógnitas mediante una ecuación lineal
En Resolución de ecuaciones lineales aprendimos a resolver ecuaciones lineales con una variable. Ahora trabajaremos con dos o más ecuaciones lineales agrupadas, lo que se conoce como un sistema de ecuaciones lineales.
Una ecuación lineal en dos variables, como \(2x+y=7\), tiene un número infinito de soluciones. Su gráfica es una recta. Recuerda que cada punto de la recta es una solución de la ecuación y que cada solución de la ecuación es un punto de la recta.
Para resolver un sistema de dos ecuaciones lineales, queremos encontrar los valores de las variables que son soluciones de ambas ecuaciones. En otras palabras, buscamos los pares ordenados \((x,y)\Nque hacen que ambas ecuaciones sean verdaderas. Son las soluciones de un sistema de ecuaciones.
Para determinar si un par ordenado es una solución de un sistema de dos ecuaciones, sustituimos los valores de las variables en cada ecuación. Si el par ordenado hace que ambas ecuaciones sean verdaderas, es una solución del sistema.
La gráfica de una ecuación lineal es una recta. Cada punto de la recta es una solución de la ecuación. Para un sistema de dos ecuaciones, graficaremos dos rectas. Así podremos ver todos los puntos que son soluciones de cada ecuación. Y, al encontrar lo que las rectas tienen en común, encontraremos la solución del sistema.
Ecuación lineal con dos incógnitas
Un fabricante de monopatines introduce una nueva línea de tablas. El fabricante hace un seguimiento de sus costes, que es la cantidad que gasta para producir las tablas, y de sus ingresos, que es la cantidad que gana con las ventas de sus tablas. ¿Cómo puede determinar la empresa si está obteniendo beneficios con su nueva línea? ¿Cuántas tablas de skate deben producirse y venderse para obtener un beneficio? En esta sección consideraremos ecuaciones lineales con dos variables para responder a estas y otras preguntas similares.
Para investigar situaciones como la del fabricante de monopatines, tenemos que reconocer que estamos tratando con más de una variable y probablemente con más de una ecuación. Un sistema de ecuaciones lineales consiste en dos o más ecuaciones lineales formadas por dos o más variables, de manera que todas las ecuaciones del sistema se consideran simultáneamente. Para encontrar la solución única de un sistema de ecuaciones lineales, debemos encontrar un valor numérico para cada variable del sistema que satisfaga todas las ecuaciones del sistema al mismo tiempo. Algunos sistemas lineales pueden no tener solución y otros pueden tener un número infinito de soluciones. Para que un sistema lineal tenga una solución única, debe haber al menos tantas ecuaciones como variables. Aun así, esto no garantiza una solución única.