Skip to content

Resolver sistemas de ecuaciones 3 incógnitas

junio 5, 2022

3 variables 2 ecuaciones

Juan recibió una herencia de 12.000 $ que dividió en tres partes e invirtió de tres maneras: en un fondo del mercado monetario que paga un 3% de interés anual; en bonos municipales que pagan un 4% de interés anual; y en fondos de inversión que pagan un 7% de interés anual. John invirtió 4.000 dólares más en fondos municipales que en bonos municipales. Ganó 670 dólares en intereses el primer año. ¿Cuánto invirtió Juan en cada tipo de fondo?

Entender el enfoque correcto para plantear problemas como éste hace que encontrar una solución sea cuestión de seguir un patrón. En esta sección resolveremos éste y otros problemas similares que implican tres ecuaciones y tres variables. Para ello se utilizan técnicas similares a las empleadas para resolver sistemas de dos ecuaciones en dos variables. Sin embargo, encontrar las soluciones de los sistemas de tres ecuaciones requiere un poco más de organización y un poco de gimnasia visual.

Para resolver sistemas de ecuaciones en tres variables, conocidos como sistemas de tres en tres, el objetivo principal es eliminar una variable cada vez para lograr la sustitución por la espalda. Una solución a un sistema de tres ecuaciones en tres variables [latex]\left(x,y,z\right),\text{}[/latex] se llama un triple ordenado.

Solucionador de ecuaciones en línea

Juan recibió una herencia de 12.000 dólares que dividió en tres partes e invirtió de tres maneras: en un fondo del mercado monetario que paga un 3% de interés anual; en bonos municipales que pagan un 4% de interés anual; y en fondos de inversión que pagan un 7% de interés anual. John invirtió 4.000 dólares más en fondos municipales que en bonos municipales. Ganó 670 dólares en intereses el primer año. ¿Cuánto invirtió Juan en cada tipo de fondo?

Entender el enfoque correcto para plantear problemas como éste hace que encontrar una solución sea cuestión de seguir un patrón. En esta sección resolveremos éste y otros problemas similares que implican tres ecuaciones y tres variables. Para ello se utilizan técnicas similares a las empleadas para resolver sistemas de dos ecuaciones en dos variables. Sin embargo, encontrar las soluciones de los sistemas de tres ecuaciones requiere un poco más de organización y un poco de gimnasia visual.

Para resolver sistemas de ecuaciones en tres variables, conocidos como sistemas de tres en tres, la principal herramienta que utilizaremos se llama eliminación gaussiana, que recibe su nombre del prolífico matemático alemán Karl Friedrich Gauss. Aunque no hay un orden definitivo en el que se deben realizar las operaciones, sí hay pautas específicas sobre el tipo de movimientos que se pueden hacer. Podemos numerar las ecuaciones para llevar la cuenta de los pasos que aplicamos. El objetivo es eliminar una variable cada vez para conseguir la forma triangular superior, que es la forma ideal para un sistema de tres por tres, ya que permite una sustitución posterior directa para encontrar una solución que llamamos triple ordenada. Un sistema en forma triangular superior tiene el siguiente aspecto:

Solucionador del sistema de ecuaciones

=−2×2+1×1+1×(−2)−2×0+1×1+1×4−2×1+1×(−2)+1×(−2)−15×2+8×1+5×(−2)−15×0+8×1+5×4−15×1+8×(−2)+5×(−2)6×2+(−3)×1+(−2)×(−2)6×0+(−3)×1+(−2)×46×1+(−3)×(−2)+(−2)×(−2)=−55−6−3228−4113−1116. En el ejemplo anterior, hemos resuelto una ecuación matricial utilizando la inversa de una matriz. Sin embargo, nos dieron la inversa de la matriz 3×3,

resolver una ecuación matricial dada.Ejemplo 2: Resolver una ecuación matricial encontrando la inversa de una matrizResolver 1-1-111-1110=9-116 usando la inversa de una matriz.Respuesta En este ejemplo, necesitamos resolver una ecuación matricial. Para resolverla

Matlab resolver sistema de ecuaciones lineales

Para incrustar este widget en una entrada de su blog de WordPress, copie y pegue el código corto de abajo en la fuente HTML:Para blogs de WordPress autoalojadosPara incrustar este widget en una entrada, instale el plugin Wolfram|Alpha Widget Shortcode y copie y pegue el código corto de arriba en la fuente HTML.Para incrustar un widget en la barra lateral de su blog, instale el plugin Wolfram|Alpha Widget Sidebar, y copie y pegue el ID del widget de abajo en el campo “id”:

Para añadir un widget a un sitio MediaWiki, el wiki debe tener instalada la Extensión de Widgets, así como el código del widget Wolfram|Alpha.Para incluir el widget en una página del wiki, pegue el código de abajo en la fuente de la página.Guardar en Mis WidgetsConstruir un nuevo widget

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad