Skip to content

Sistema de ecuaciones con dos variables

junio 8, 2022

Ejemplos de sistemas de ecuaciones lineales en dos variables

En un “sistema de ecuaciones” se pide que se resuelvan dos o más ecuaciones al mismo tiempo. Cuando éstas tienen dos variables diferentes, como x e y, o a y b, puede ser complicado a primera vista ver cómo resolverlas. Afortunadamente, una vez que sabes lo que hay que hacer, todo lo que necesitas son conocimientos básicos de álgebra (y a veces algunos conocimientos de fracciones) para resolver el problema. Si eres un estudiante visual o si tu profesor te lo pide, aprende también a representar gráficamente las ecuaciones. La gráfica puede ser útil para “ver lo que está pasando” o para comprobar tu trabajo, pero puede ser más lenta que los otros métodos, y no funciona bien para todos los sistemas de ecuaciones.

Resumen del artículoPara resolver sistemas de ecuaciones algebraicas que contengan dos variables, empieza por mover las variables a diferentes lados de la ecuación. Luego, divide ambos lados de la ecuación por una de las variables para resolver esa variable. A continuación, toma ese número y mételo en la fórmula para resolver la otra variable. Por último, toma tu respuesta y ponla en la ecuación original para resolver la otra variable. Para aprender a resolver sistemas de ecuaciones algebraicas mediante el método de eliminación, desplázate hacia abajo.

Hoja de trabajo del sistema de ecuaciones lineales en dos variables

En Resolución de ecuaciones lineales, aprendimos a resolver ecuaciones lineales con una variable. Ahora trabajaremos con dos o más ecuaciones lineales agrupadas, lo que se conoce como sistema de ecuaciones lineales.

Una ecuación lineal en dos variables, como \(2x+y=7\), tiene un número infinito de soluciones. Su gráfica es una recta. Recuerda que cada punto de la recta es una solución de la ecuación y que cada solución de la ecuación es un punto de la recta.

Para resolver un sistema de dos ecuaciones lineales, queremos encontrar los valores de las variables que son soluciones de ambas ecuaciones. En otras palabras, buscamos los pares ordenados \((x,y)\Nque hacen que ambas ecuaciones sean verdaderas. Son las soluciones de un sistema de ecuaciones.

Para determinar si un par ordenado es una solución de un sistema de dos ecuaciones, sustituimos los valores de las variables en cada ecuación. Si el par ordenado hace que ambas ecuaciones sean verdaderas, es una solución del sistema.

La gráfica de una ecuación lineal es una recta. Cada punto de la recta es una solución de la ecuación. Para un sistema de dos ecuaciones, graficaremos dos rectas. Así podremos ver todos los puntos que son soluciones de cada ecuación. Y, al encontrar lo que las rectas tienen en común, encontraremos la solución del sistema.

Cómo resolver un sistema de ecuaciones con dos variables

Un fabricante de monopatines introduce una nueva línea de tablas. El fabricante hace un seguimiento de sus costes, que es la cantidad que gasta para producir las tablas, y de sus ingresos, que es la cantidad que gana con las ventas de sus tablas. ¿Cómo puede determinar la empresa si está obteniendo beneficios con su nueva línea? ¿Cuántas tablas de skate deben producirse y venderse para obtener beneficios? En esta sección, consideraremos ecuaciones lineales con dos variables para responder a estas y otras preguntas similares.

Para investigar situaciones como la del fabricante de monopatines, tenemos que reconocer que estamos tratando con más de una variable y probablemente con más de una ecuación. Un sistema de ecuaciones lineales consiste en dos o más ecuaciones lineales formadas por dos o más variables, de manera que todas las ecuaciones del sistema se consideran simultáneamente. Para encontrar la solución única de un sistema de ecuaciones lineales, debemos encontrar un valor numérico para cada variable del sistema que satisfaga todas las ecuaciones del sistema al mismo tiempo. Algunos sistemas lineales pueden no tener solución y otros pueden tener un número infinito de soluciones. Para que un sistema lineal tenga una solución única, debe haber al menos tantas ecuaciones como variables. Aun así, esto no garantiza una solución única.

Resolución de ecuaciones lineales con 2 variables

Este artículo incluye una lista de referencias generales, pero carece de las correspondientes citas en línea. Por favor, ayude a mejorar este artículo introduciendo citas más precisas. (Octubre 2015) (Aprende cómo y cuándo eliminar este mensaje de la plantilla)

es un sistema de tres ecuaciones en las tres variables x, y, z. Una solución de un sistema lineal es una asignación de valores a las variables tal que todas las ecuaciones se satisfacen simultáneamente. Una solución del sistema anterior viene dada por la siguiente tripleta ordenada.

En matemáticas, la teoría de los sistemas lineales es la base y una parte fundamental del álgebra lineal, materia que se utiliza en la mayor parte de las matemáticas modernas. Los algoritmos computacionales para encontrar las soluciones son una parte importante del álgebra lineal numérica, y desempeñan un papel destacado en ingeniería, física, química, informática y economía. Un sistema de ecuaciones no lineales a menudo puede aproximarse mediante un sistema lineal (véase linealización), una técnica útil cuando se hace un modelo matemático o una simulación por ordenador de un sistema relativamente complejo.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad