Saltar al contenido

Sistema de ecuaciones lineales metodos de resolucion

junio 5, 2022
Sistema de ecuaciones lineales metodos de resolucion

Resolver un sistema de ecuaciones lineales en matlab

Los sistemas de ecuaciones son múltiples ecuaciones que tienen una solución común. Los estudiantes se encuentran con estos sistemas de ecuaciones cuando hay múltiples “incógnitas” -o variables- que aún no se les han dado. Cuando esto ocurre, el objetivo de los estudiantes es utilizar la información dada en las ecuaciones para resolver todas las variables.

Para resolver un sistema por medio de una gráfica, basta con representar gráficamente las ecuaciones dadas y encontrar el punto o los puntos en los que se cruzan. La coordenada de este punto te dará los valores de las variables que estás resolviendo. Esto es más eficiente cuando las ecuaciones ya están escritas en forma de intersección de pendientes.

El siguiente método es la sustitución. La sustitución se utiliza mejor cuando una de las ecuaciones está en términos de una de las variables, como y=2x+4, pero las ecuaciones siempre se pueden manipular. El primer paso de este método es resolver una de las ecuaciones para una variable. Una vez que se encuentra una expresión para la variable, se sustituye o se introduce la expresión en la otra ecuación donde estaba la variable original para resolver el valor numérico de la siguiente variable. El último paso es sustituir el valor numérico encontrado por su correspondiente variable en la ecuación original.

Cómo resolver sistemas lineales

Los sistemas de ecuaciones son múltiples ecuaciones que tienen una solución común. Los alumnos se encuentran con estos sistemas de ecuaciones cuando hay múltiples “incógnitas” -o variables- que aún no se les han dado. Cuando esto ocurre, el objetivo de los estudiantes es utilizar la información dada en las ecuaciones para resolver todas las variables.

Para resolver un sistema mediante una gráfica, basta con representar gráficamente las ecuaciones dadas y encontrar el punto o puntos en los que se cruzan. La coordenada de este punto te dará los valores de las variables que estás resolviendo. Esto es más eficiente cuando las ecuaciones ya están escritas en forma de intersección de pendientes.

El siguiente método es la sustitución. La sustitución se utiliza mejor cuando una de las ecuaciones está en términos de una de las variables, como y=2x+4, pero las ecuaciones siempre se pueden manipular. El primer paso de este método es resolver una de las ecuaciones para una variable. Una vez que se encuentra una expresión para la variable, se sustituye o se introduce la expresión en la otra ecuación donde estaba la variable original para resolver el valor numérico de la siguiente variable. El último paso es sustituir el valor numérico encontrado por su correspondiente variable en la ecuación original.

Resolver un sistema de ecuaciones lineales

Ahora vamos a hacer el mismo cálculo en el mismo ordenador que redondea el cálculo a 3 decimales. Esta vez intercambiaremos las filas antes de proceder a la eliminación gaussiana. Eliminando algún detalle podemos ver

La eliminación de Gauss-Jordan simplemente añade pasos al procedimiento simple de eliminación de Gauss para producir una matriz que está en forma escalonada reducida. Esto se hace eliminando valores tanto por encima como por debajo de los pivotes y asegurando que cada pivote tiene el valor 1. A partir de donde terminamos en la solución exacta de la matriz $\mathbf{B}$ antes de que podamos simplemente añadir dos pasos para producir una matriz escalonada fila reducida.

Para la inversión de matrices, tanto la eliminación de Gauss con sustitución por la espalda como los esquemas de Gauss-Jordan descritos anteriormente tienen eficiencias idénticas. Por esta razón, para simplificar, sólo consideraremos el proceso de inversión de la matriz utilizando el esquema de Gauss-Jordan.

Solucionador de sistemas de ecuaciones lineales

Un sistema de ecuaciones lineales (o sistema lineal) es un grupo de ecuaciones (lineales) que tienen más de una incógnita. Las incógnitas aparecen en varias ecuaciones, pero no es necesario que estén en todas ellas. Lo que hacen estas ecuaciones es relacionar todas las incógnitas entre sí. Por ejemplo,

No siempre hay una solución e incluso puede haber un número infinito de soluciones. Si sólo hay una solución (un valor para cada incógnita, como en el ejemplo anterior), se dice que el sistema es un sistema dependiente consistente. No hablaremos de otros tipos de sistemas.

Para resolver un sistema dependiente consistente, necesitamos al menos el mismo número de ecuaciones que de incógnitas. En este apartado resolveremos sistemas lineales de dos ecuaciones y dos incógnitas con los métodos que describimos a continuación, que se basan en la obtención de una ecuación de primer grado (una ecuación lineal).

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad