Sistema de ecuaciones lineales
Si un sistema de ecuaciones consiste sólo en un par de ecuaciones lineales de dos variables, entonces la ecuación de este sistema se puede graficar; la gráfica contendrá dos rectas, y la solución del sistema será el punto o puntos de intersección de esas rectas. Dado que dos rectas en el plano sólo pueden graficarse de tres maneras, sólo hay tres formas correspondientes de solución para un sistema de ecuaciones dado.
Dos rectas (1) tienen diferentes pendientes e intersecciones, por lo que se cruzan exactamente en un punto, (2) son paralelas con diferentes intersecciones, por lo que nunca se cruzan en ningún punto, o (3) tienen la misma pendiente e intersecciones, por lo que son realmente la misma línea, por lo que se “cruzan” en todas partes (donde “en todas partes” significa “en todas partes la línea va, también va la otra línea; tienen todos sus puntos – infinitamente muchos puntos – en común”). Estos tres casos de pares de rectas se ilustran a continuación:
El primer gráfico de arriba, que es el “caso 1” de la columna de la izquierda, muestra dos rectas distintas no paralelas que se cruzan exactamente en un punto. El sistema de ecuaciones correspondiente se denomina sistema “independiente” y la solución es un único punto (x,y).
Cómo hacer un sistema de ecuaciones lineales
Un fabricante de monopatines introduce una nueva línea de tablas. El fabricante hace un seguimiento de sus costes, que es la cantidad que gasta para producir las tablas, y de sus ingresos, que es la cantidad que gana con las ventas de sus tablas. ¿Cómo puede determinar la empresa si está obteniendo beneficios con su nueva línea? ¿Cuántas tablas de skate deben producirse y venderse para obtener beneficios? En esta sección, consideraremos ecuaciones lineales con dos variables para responder a estas y otras preguntas similares.
Para investigar situaciones como la del fabricante de monopatines, tenemos que reconocer que estamos tratando con más de una variable y probablemente con más de una ecuación. Un sistema de ecuaciones lineales consiste en dos o más ecuaciones lineales formadas por dos o más variables, de manera que todas las ecuaciones del sistema se consideran simultáneamente. Para encontrar la solución única de un sistema de ecuaciones lineales, debemos encontrar un valor numérico para cada variable del sistema que satisfaga todas las ecuaciones del sistema al mismo tiempo. Algunos sistemas lineales pueden no tener solución y otros pueden tener un número infinito de soluciones. Para que un sistema lineal tenga una solución única, debe haber al menos tantas ecuaciones como variables. Aun así, esto no garantiza una solución única.
Matriz del sistema de ecuaciones lineales
Los sistemas de ecuaciones son múltiples ecuaciones que tienen una solución común. Los alumnos se encuentran con estos sistemas de ecuaciones cuando hay múltiples “incógnitas” -o variables- que aún no se les han dado. Cuando esto ocurre, el objetivo de los alumnos es utilizar la información dada en las ecuaciones para resolver todas las variables.
Para resolver un sistema mediante una gráfica, basta con representar gráficamente las ecuaciones dadas y encontrar el punto o puntos en los que se cruzan. La coordenada de este punto te dará los valores de las variables que estás resolviendo. Esto es más eficiente cuando las ecuaciones ya están escritas en forma de intersección de pendientes.
El siguiente método es la sustitución. La sustitución se utiliza mejor cuando una de las ecuaciones está en términos de una de las variables, como y=2x+4, pero las ecuaciones siempre se pueden manipular. El primer paso de este método es resolver una de las ecuaciones para una variable. Una vez que se encuentra una expresión para la variable, se sustituye o se introduce la expresión en la otra ecuación donde estaba la variable original para resolver el valor numérico de la siguiente variable. El último paso es sustituir el valor numérico encontrado por su correspondiente variable en la ecuación original.
Sistemas de ecuaciones lineales en dos variables
Un fabricante de monopatines introduce una nueva línea de tablas. El fabricante hace un seguimiento de sus costes, que es la cantidad que gasta para producir las tablas, y de sus ingresos, que es la cantidad que gana con las ventas de sus tablas. ¿Cómo puede determinar la empresa si está obteniendo beneficios con su nueva línea? ¿Cuántas tablas de skate deben producirse y venderse para obtener beneficios? En esta sección, consideraremos ecuaciones lineales con dos variables para responder a estas y otras preguntas similares.
Para investigar situaciones como la del fabricante de monopatines, tenemos que reconocer que estamos tratando con más de una variable y probablemente con más de una ecuación. Un sistema de ecuaciones lineales consiste en dos o más ecuaciones lineales formadas por dos o más variables, de manera que todas las ecuaciones del sistema se consideran simultáneamente. Para encontrar la solución única de un sistema de ecuaciones lineales, debemos encontrar un valor numérico para cada variable del sistema que satisfaga todas las ecuaciones del sistema al mismo tiempo. Algunos sistemas lineales pueden no tener solución y otros pueden tener un número infinito de soluciones. Para que un sistema lineal tenga una solución única, debe haber al menos tantas ecuaciones como variables. Aun así, esto no garantiza una solución única.