Skip to content

Solucion ecuacion segundo grado

junio 8, 2022

Ejemplos de ecuaciones de segundo grado

Simplificando la ecuación llegamos a que es verdadera todo el tiempo, no depende del valor de , por lo que no importa el valor de la ecuación siempre es verdadera, y como tiene infinitos valores posibles tenemos infinitas soluciones para esta ecuación.

Elegimos 2 valores de y obtenemos el valor respectivo de y luego graficamos los dos puntos en un plano y el nuevo trazamos la recta que pasa por los dos puntos, y la coordenada del punto de intersección de la recta y el eje x es la solución de la ecuación.

Llamamos ecuación de segundo grado, a toda ecuación con la forma estándar con , y siendo números reales y distintos de cero. Se llama ecuación de segundo grado porque la mayor potencia de en esta ecuación es 2 (es decir ).

Ahora la resolución es sencilla ya que tenemos el producto de dos de primer grado igual a cero entonces sabemos con seguridad que o el primer término del producto es igual a cero o el segundo es igual a cero, lo que significa que o , resolvemos cada término de primer grado del lado izquierdo, obtenemos:

¿Cuál de las siguientes es una ecuación de segundo grado

¿Qué es una ecuación cuadrática? Una ecuación cuadrática es una ecuación de segundo grado, lo que significa que contiene al menos un término al cuadrado. La forma estándar es ax² + bx + c = 0, siendo a, b y c constantes o coeficientes numéricos, y x una variable desconocida. Sigue leyendo para ver ejemplos de ecuaciones cuadráticas en formas estándar y no estándar, así como una lista de términos de ecuaciones cuadráticas.

Ejemplos de ecuaciones en forma estándarLa manera más fácil de aprender ecuaciones cuadráticas es comenzar en la forma estándar. Aunque no todas las ecuaciones cuadráticas que veas estarán en esta forma, sigue siendo útil ver ejemplos. Ten en cuenta que la primera constante a no puede ser un cero.

Ejemplos de ecuaciones cuadráticas incompletasA medida que desarrolles tus habilidades de álgebra, encontrarás que no todas las ecuaciones cuadráticas están en la forma estándar. Mira ejemplos de diferentes casos de ecuaciones cuadráticas no estándar. Falta el coeficiente linealA veces una ecuación cuadrática no tiene el coeficiente lineal o la parte bx de la ecuación. Los ejemplos incluyen:

Fórmula cuadrática

Desde hace mucho tiempo, los matemáticos han mostrado un gran interés por la resolución de ecuaciones de segundo grado (también conocidas como ecuaciones cuadráticas), es decir, ecuaciones cuyo mayor grado contiene x2 (utilizando las notaciones modernas habituales). Así, el primer texto conocido que se refiere a estas últimas se remonta a dos mil años antes de nuestra era, en la época de los babilonios. Es entonces Al-Khwarizmi, durante el siglo IX, quien estableció las fórmulas para la resolución sistemática de estas ecuaciones (por favor, consulte los enlaces dados al final de este post para los aspectos históricos).

En la actualidad, la metodología para resolver ecuaciones de segundo grado se basa en su forma canónica. Por ejemplo, si consideramos la ecuación x2 + 2x – 3 = 0, el trinomio x2 + 2x – 3 es como el principio de una identidad notable. En efecto, podemos escribir:

Sabemos que un producto de términos es igual a cero si y sólo si al menos uno de los términos es igual a cero (esto se debe a que el cero es el elemento absorbente de la operación de multiplicación). Esta regla conduce, por tanto, al sistema:

Solucionador de ecuaciones de segundo grado

Las ecuaciones que incluyen incógnitas elevadas a una potencia de uno se conocen como ecuaciones de primer grado. También existen ecuaciones de segundo grado que incluyen al menos una variable elevada al cuadrado o a una potencia de dos. Las ecuaciones también pueden ser de tercer grado, de cuarto grado, etc. La ecuación de segundo grado más famosa es la ecuación cuadrática, que tiene la forma general ax2 +bx +c = 0; donde a, b y c son constantes y a no es igual a 0. La solución de este tipo de ecuación puede encontrarse a menudo mediante un método conocido como factorización.

Dado que la ecuación cuadrática es el producto de dos ecuaciones de primer grado, se puede factorizar en estas ecuaciones. Por ejemplo, el producto de las dos expresiones (x + 2)(x – 3) nos proporciona la expresión cuadrática x2 – x – 6. Las dos expresiones (x + 2) y (x – 3) se llaman factores de la expresión cuadrática x2 – x – 6. Al establecer cada factor de una ecuación cuadrática igual a cero, se pueden obtener soluciones. En esta ecuación cuadrática, las soluciones son x = -2 y x = 3.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad