Saltar al contenido

Solucionador ecuaciones de segundo grado

junio 8, 2022

Resolver una ecuación compleja

La resolución de ecuaciones es el tema central del álgebra. Todas las habilidades aprendidas conducen finalmente a la capacidad de resolver ecuaciones y simplificar las soluciones. En los capítulos anteriores hemos resuelto ecuaciones de primer grado. Ahora tienes las habilidades necesarias para resolver ecuaciones de segundo grado, que se conocen como ecuaciones cuadráticas.

Un teorema importante, que no se puede demostrar al nivel de este texto, afirma que “Toda ecuación polinómica de grado n tiene exactamente n raíces”. Este hecho nos dice que las ecuaciones cuadráticas siempre tendrán dos soluciones. Es posible que las dos soluciones sean iguales.

No intentaremos demostrar este teorema, pero fíjate bien en lo que dice. Nunca podemos multiplicar dos números y obtener una respuesta de cero a menos que al menos uno de los números sea cero. Por supuesto, ambos números pueden ser cero ya que (0)(0) = 0.

Las soluciones pueden indicarse escribiendo x = 6 y x = – 1 o utilizando la notación de conjuntos y escribiendo {6, – 1}, con lo que leemos “el conjunto solución para x es 6 y – 1”. En este texto utilizaremos la notación de conjuntos.

Solucionador de ecuaciones cuárticas

Las ecuaciones que incluyen incógnitas elevadas a una potencia de uno se conocen como ecuaciones de primer grado. También existen ecuaciones de segundo grado que incluyen al menos una variable elevada al cuadrado o a una potencia de dos. Las ecuaciones también pueden ser de tercer grado, de cuarto grado, etc. La ecuación de segundo grado más famosa es la ecuación cuadrática, que tiene la forma general ax2 +bx +c = 0; donde a, b y c son constantes y a no es igual a 0. La solución de este tipo de ecuación puede encontrarse a menudo mediante un método conocido como factorización.

Dado que la ecuación cuadrática es el producto de dos ecuaciones de primer grado, se puede factorizar en estas ecuaciones. Por ejemplo, el producto de las dos expresiones (x + 2)(x – 3) nos proporciona la expresión cuadrática x2 – x – 6. Las dos expresiones (x + 2) y (x – 3) se llaman factores de la expresión cuadrática x2 – x – 6. Al establecer cada factor de una ecuación cuadrática igual a cero, se pueden obtener soluciones. En esta ecuación cuadrática, las soluciones son x = -2 y x = 3.

Ejercicios de ecuaciones de segundo grado pdf

Para averiguar las raíces (ceros) de una función de segundo grado, se empieza por poner esa función en forma canónica (simplificando al máximo) y hacerla igual a cero. Después de este paso, tienes una ecuación de segundo grado donde el segundo miembro es cero. Para resolver esta ecuación, empieza por intentar identificar si es una ecuación de segundo grado completa o incompleta. La diferencia es bastante sencilla. La ecuación de segundo grado completa tiene los 3 coeficientes: `a`, `b`, `c` y se puede escribir de la forma `ax^2+bx+c=0`. Mientras que en la incompleta falta `b` o `c` o ambas. A continuación, introduce los coeficientes de los términos de la ecuación en las casillas correspondientes de la calculadora. De esta forma, además de conocer los ceros, podrás ver la resolución paso a paso. Si es una ecuación completa, se utiliza la fórmula general de las ecuaciones completas de segundo grado. Si es incompleta, el primer paso para resolver este tipo de ecuaciones es sacar un factor común, ya que se repite una `x` en ambos términos. Finalmente tenemos dos factores cuyo resultado es cero, por lo que uno de los dos debe ser 0.

Solucionador de ecuaciones diferenciales

– Resolución de funciones logarítmicas mediante Identidades Logarítmicas- Determinación de los focos y la ecuación de una hipérbola- Determinación del área de un círculo a partir de su perímetro- Cálculos de triángulos rectángulos- Resolución de polinomios de segundo grado 2

– Resolución de polinomios de segundo grado- Resolución de polinomios de segundo grado 2- Cálculos de triángulos rectángulos- Determinación del área de una circunferencia a partir de su perímetro- Determinación de los focos y de la ecuación de una hipérbola- Determinación del foco y de la directriz de una parábola- Resolución de funciones logarítmicas mediante identidades logarítmicas

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad