Saltar al contenido

Resolucion de ecuaciones exponenciales

junio 6, 2022

Resolución de ecuaciones exponenciales hoja de trabajo de álgebra 2

La primera técnica que introduciremos para resolver ecuaciones exponenciales implica dos funciones con bases similares. Recordemos que la propiedad uno a uno de las funciones exponenciales nos dice que, para cualquier número real b, S y T, donde [latex]b>0,\text{ }b\ne 1[/latex], [latex]{b}^{S}={b}^{T}[/latex] si y sólo si S = T.

En otras palabras, cuando una ecuación exponencial tiene la misma base en cada lado, los exponentes deben ser iguales. Esto también se aplica cuando los exponentes son expresiones algebraicas. Por tanto, podemos resolver muchas ecuaciones exponenciales utilizando las reglas de los exponentes para reescribir cada lado como una potencia con la misma base. A continuación, utilizamos el hecho de que las funciones exponenciales son uno a uno para establecer los exponentes iguales entre sí y resolver la incógnita.

Por ejemplo, consideremos la ecuación [latex]{3}^{4x – 7}=\frac{3}^{2x}{3}[/latex]. Para resolver x, utilizamos la propiedad de división de los exponentes para reescribir el lado derecho de manera que ambos lados tengan la base común 3. A continuación, aplicamos la propiedad uno a uno de los exponentes poniendo los exponentes iguales entre sí y resolviendo para x:

Resolución de ecuaciones exponenciales con diferentes bases

Para resolver ecuaciones exponenciales sin logaritmos, necesitas tener ecuaciones con expresiones exponenciales comparables a ambos lados del signo “igual”, para poder comparar las potencias y resolver. En otras palabras, tienes que tener “(alguna base) a (alguna potencia) igual a (la misma base) a (alguna otra potencia)”, donde estableces las dos potencias iguales entre sí, y resuelves la ecuación resultante. Por ejemplo:

Esta solución demuestra la base lógica de cómo se resuelve toda esta clase de ecuaciones: Si las bases son iguales, entonces las potencias también deben ser iguales; ésta es la única manera de que los dos lados de la ecuación sean iguales entre sí. Como las potencias deben ser iguales, entonces podemos establecer las dos potencias iguales entre sí, y resolver la ecuación resultante.

No todas las ecuaciones exponenciales se dan en términos de la misma base a ambos lados del signo “igual”. A veces tenemos que convertir primero un lado o el otro (o ambos) a otra base antes de poder igualar las potencias. Por ejemplo:

Resolución de ecuaciones exponenciales notas

Este artículo fue escrito por David Jia. David Jia es un tutor académico y el fundador de LA Math Tutoring, una empresa de tutoría privada con sede en Los Ángeles, California. Con más de 10 años de experiencia en la enseñanza, David trabaja con estudiantes de todas las edades y grados en diversas materias, así como en el asesoramiento de admisión a la universidad y la preparación de exámenes para el SAT, ACT, ISEE, y más. Después de obtener una puntuación perfecta de 800 en matemáticas y 690 en inglés en el SAT, David fue galardonado con la beca Dickinson de la Universidad de Miami, donde se graduó con una licenciatura en Administración de Empresas. Además, David ha trabajado como instructor de videos en línea para compañías de libros de texto como Larson Texts, Big Ideas Learning y Big Ideas Math.

Las ecuaciones exponenciales pueden parecer intimidantes, pero resolverlas sólo requiere conocimientos básicos de álgebra. Las ecuaciones con exponentes que tienen la misma base pueden resolverse rápidamente. En otros casos, es necesario utilizar los logaritmos para resolverlas. Pero incluso este método es sencillo con la ayuda de una calculadora científica.

Resolución de ecuaciones exponenciales con logaritmos

Las ecuaciones exponenciales, como su nombre indica, implican exponentes. Sabemos que el exponente de un número (base) indica el número de veces que se multiplica el número (base). Pero, ¿qué ocurre si la potencia de un número es una variable? Cuando la potencia es una variable y si forma parte de una ecuación, entonces se llama ecuación exponencial. Es posible que necesitemos utilizar la conexión entre los exponentes y los logaritmos para resolver las ecuaciones exponenciales.

Conozcamos la definición de ecuaciones exponenciales junto con el proceso de resolución de las mismas cuando las bases son iguales y cuando las bases no son iguales junto con algunos ejemplos resueltos y preguntas de práctica.

Una ecuación exponencial es una ecuación con exponentes donde el exponente (o) una parte del exponente es una variable. Por ejemplo, 3x = 81, 5x – 3 = 625, 62y – 7 = 121, etc. son algunos ejemplos de ecuaciones exponenciales. Podemos encontrarnos con el uso de ecuaciones exponenciales cuando resolvemos problemas de álgebra, interés compuesto, crecimiento exponencial, decaimiento exponencial, etc.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad