Matriz de forma cuadrática
Muchas ecuaciones cuadráticas no se pueden resolver mediante la factorización. Esto suele ocurrir cuando las raíces, o las respuestas, no son números racionales. Un segundo método para resolver ecuaciones cuadráticas implica el uso de la siguiente fórmula:
Al utilizar la fórmula cuadrática, debes tener en cuenta tres posibilidades. Estas tres posibilidades se distinguen por una parte de la fórmula llamada discriminante. El discriminante es el valor bajo el signo radical, b 2 – 4 ac. Una ecuación cuadrática con números reales como coeficientes puede tener lo siguiente:
No tiene solución en el sistema de números reales. Te puede interesar saber que el proceso de completar el cuadrado para resolver ecuaciones cuadráticas se utilizó en la ecuación ax 2 + bx + c = 0 para derivar la fórmula cuadrática.
Fórmula Pq
Cuando resolvimos ecuaciones cuadráticas en la última sección completando el cuadrado, seguimos siempre los mismos pasos. Al final del conjunto de ejercicios, te habrás preguntado “¿no hay una forma más fácil de hacer esto?”. La respuesta es “sí”. En esta sección, derivaremos y utilizaremos una fórmula para encontrar la solución de una ecuación cuadrática.
Ya hemos visto cómo resolver una fórmula para una variable específica ‘en general’, de modo que haríamos los pasos algebraicos una sola vez y luego usaríamos la nueva fórmula para encontrar el valor de la variable específica. Ahora, recorreremos los pasos de completar el cuadrado en general para resolver una ecuación cuadrática para x. Puede ser útil mirar uno de los ejemplos al final de la última sección donde resolvimos una ecuación de la forma mientras lees los pasos algebraicos a continuación, para que los veas con números así como ‘en general’.
Para utilizar la fórmula cuadrática, sustituimos los valores de en la expresión del lado derecho de la fórmula. Luego, hacemos todos los cálculos para simplificar la expresión. El resultado da la(s) solución(es) de la ecuación cuadrática.
Factorización de ecuaciones cuadráticas
La resolución de ecuaciones es el tema central del álgebra. Todas las habilidades aprendidas conducen finalmente a la capacidad de resolver ecuaciones y simplificar las soluciones. En los capítulos anteriores hemos resuelto ecuaciones de primer grado. Ahora tienes las habilidades necesarias para resolver ecuaciones de segundo grado, que se conocen como ecuaciones cuadráticas.
Un teorema importante, que no se puede demostrar al nivel de este texto, dice que “Toda ecuación polinómica de grado n tiene exactamente n raíces”. Este hecho nos dice que las ecuaciones cuadráticas siempre tendrán dos soluciones. Es posible que las dos soluciones sean iguales.
No intentaremos demostrar este teorema, pero fíjate bien en lo que dice. Nunca podemos multiplicar dos números y obtener una respuesta de cero a menos que al menos uno de los números sea cero. Por supuesto, ambos números pueden ser cero ya que (0)(0) = 0.
Las soluciones pueden indicarse escribiendo x = 6 y x = – 1 o utilizando la notación de conjuntos y escribiendo {6, – 1}, con lo que leemos “el conjunto solución para x es 6 y – 1”. En este texto utilizaremos la notación de conjuntos.
B 2 4ac
Este artículo trata sobre las ecuaciones algebraicas de grado dos y sus soluciones. Para la fórmula utilizada para encontrar las soluciones de dichas ecuaciones, véase Fórmula cuadrática. Para funciones definidas por polinomios de grado dos, véase Función cuadrática.
término. Los números a, b y c son los coeficientes de la ecuación y pueden distinguirse llamándolos, respectivamente, coeficiente cuadrático, coeficiente lineal y término constante o libre[1].
Los valores de x que satisfacen la ecuación se denominan soluciones de la misma, y raíces o ceros de la expresión en su lado izquierdo. Una ecuación cuadrática tiene como máximo dos soluciones. Si sólo hay una solución, se dice que es una raíz doble. Si todos los coeficientes son números reales, hay dos soluciones reales, o una única raíz doble real, o dos soluciones complejas. Una ecuación cuadrática siempre tiene dos raíces, si se incluyen las raíces complejas; y una raíz doble se cuenta por dos. Una ecuación cuadrática se puede descomponer en una ecuación equivalente