Saltar al contenido

Como hallar la ecuacion general de un plano

junio 8, 2022

Ecuación general del plano

La ecuación del plano representa una superficie plana en un espacio tridimensional. La ecuación de un plano puede derivarse mediante cuatro métodos diferentes, basados en los valores de entrada dados. La ecuación del plano puede expresarse en forma cartesiana o en forma vectorial.

Consideremos una normal \N(\overrightarrow ON \) al plano. La normal es una recta perpendicular trazada desde el origen O a un punto N del plano, tal que \(\overrightarrow ON \) es perpendicular al plano. Sea la longitud de la normal \(\overrightarrow ON\) d unidades, tal que \(\overrightarrow ON = d \hat n\). Además, consideraremos un punto P en el plano, que tiene un vector de posición de \(\overrightarrow r\). Ahora tenemos \(\overrightarrow NP = \overrightarrow r – d. \hat n\). También \(\overrightarrow NP\) y \(\overrightarrow ON\) son perpendiculares entre sí, y el producto punto de estas dos rectas perpendiculares es igual a 0. Finalmente, tenemos la siguiente expresión para el producto punto de estas dos rectas

Consideremos un punto A en el plano con un vector de posición \(\ sobre flecha a\), y un vector \(\ sobre flecha N\), que es perpendicular a este plano. Consideremos otro punto P en el plano que tiene un vector de posición \(\overrightarrow r \). La recta \(\overrightarrow AP \) se encuentra en este plano referido y es perpendicular a la normal \(\overrightarrow N\). Aquí tenemos el producto punto de estas dos rectas igual a cero. \(\ sobre flecha AP.\Nsobre flecha N = 0\N). Resolviendo esto además tenemos la siguiente expresión.

Plano de dos vectores

Parece que estás en un dispositivo con un ancho de pantalla “estrecho” (es decir, probablemente estás en un teléfono móvil). Debido a la naturaleza de las matemáticas en este sitio, es mejor verlas en modo horizontal. Si su dispositivo no está en modo apaisado, muchas de las ecuaciones se saldrán por el lateral de su dispositivo (debería poder desplazarse para verlas) y algunos de los elementos del menú quedarán cortados debido al estrecho ancho de la pantalla.

En la primera sección de este capítulo vimos un par de ecuaciones de planos. Sin embargo, ninguna de esas ecuaciones tenía tres variables en ellas y eran realmente extensiones de gráficas que podíamos ver en dos dimensiones. Nos gustaría tener una ecuación más general para los planos.

Por lo tanto, vamos a empezar por suponer que sabemos un punto que está en el plano, \ ({P_0} = \left( {{x_0},{y_0},{z_0} \right)\). Supongamos también que tenemos un vector que es ortogonal (perpendicular) al plano, \(\vec n = \left\langle {a,b,c} \right\rangle \). Este vector se llama vector normal. Ahora, supongamos que \N(P = \left( {x,y,z} \right)\Nes un punto cualquiera del plano. Por último, ya que vamos a estar trabajando con los vectores inicialmente vamos a dejar que \ ~(\overrightarrow {{r_0}}) y \ ~(\vec r\) son los vectores de posición para P0

Vector normal de un plano

Formas (cartesianas o normales) de la ecuación de un plano dado el vector normal y un punto en él.Consideremos primero la ecuación de una recta en forma cartesiana y reescribámosla en forma vectorial en dos dimensiones,

Un vector normal ⃑-⃑ a una recta o a un plano es un vector que es perpendicular a la recta o al plano. En otras palabras, el vector normal es perpendicular a cualquier vector ⃑ que sea paralelo a la

++-(++)=0.Esto se puede reordenar para dar la ecuación del plano en forma escalar.Definición: Forma escalar de la ecuación de un planoLa forma escalar de la ecuación de un plano en ℝ que contiene los vectores puntuales

Ejemplo 2. Hallar la ecuación general de un plano Hallar la ecuación general de un plano que pasa por un punto dado y es paralelo a dos vectores dadosHallar la ecuación general del plano que pasa por el punto (5,1,-1) y es paralelo

a los dos vectores (9,7,-8) y (-2,2,-1).RespuestaEn este ejemplo, queremos determinar la ecuación del plano que pasa por un punto y es paralelo a dos vectores dados.Recordemos que la forma escalar de la ecuación de un plano con un vector normal ⃑=(,,) que contiene el punto (,,) es

Ecuación plana a partir de 3 puntos

¿Qué son los puntos de un plano? En geometría, un plano es una superficie bidimensional infinita en un espacio tridimensional. Los planos son el análogo tridimensional de las líneas en dos dimensiones. Los planos se describen mediante ecuaciones lineales en tres variables {eq}x, y, z {/eq}. Cualquier triple ordenada {eq}(x, y, z) {/eq} que satisfaga la ecuación, determina la ubicación de un punto en el plano. Dos puntos cualesquiera en el espacio pueden conectarse con una recta, y entonces cualquier tercero no colineal, es decir, un punto que no está en esa recta, define un plano que conecta los tres puntos. Esto puede visualizarse conectando los tres puntos para crear un triángulo en el espacio, y luego extendiendo esto a una superficie plana infinitamente grande.

El vector normal es perpendicular al plano. El producto cruzado de dos vectores coplanares cualesquiera, que puede hallarse restando pares de puntos del plano, será perpendicular y puede tomarse como vector normal.

Dados tres puntos, al restar dos pares diferentes se obtienen dos vectores coplanarios. El producto cruzado de éstos determinará un vector normal (a, b, c). La ecuación del plano puede expresarse en la forma estándar ax+by+cz=d, y la constante, d, puede encontrarse sustituyendo cualquier punto en la ecuación.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad