Saltar al contenido

Discutir sistemas de ecuaciones

junio 9, 2022

Ejemplos de sistemas de ecuaciones con respuestas

Vamos a motivar nuestro estudio del álgebra lineal considerando el problema de resolver varias ecuaciones lineales simultáneamente. La palabra “resolver” tiende a abusar un poco, como en “resolver este problema”. Cuando hablamos de ecuaciones entendemos un significado más preciso: encontrar todos los valores de algunas cantidades variables que hacen que una ecuación, o varias ecuaciones, sean simultáneamente verdaderas.

Nuestro primer ejemplo es del tipo que no vamos a seguir. Aunque tiene dos ecuaciones, la primera no es lineal. Así que es un buen ejemplo para volver a él más adelante, especialmente después de haber visto el Teorema PSSLS.

Para poder discutir los sistemas de ecuaciones lineales con cuidado, necesitamos una definición precisa. Y antes de hacerlo, introduciremos nuestras discusiones periódicas sobre “Técnicas de Demostración”. El álgebra lineal es un excelente escenario para aprender a leer, comprender y formular pruebas. Pero este es un paso difícil en su desarrollo como matemático, por lo que hemos incluido una serie de ensayos cortos con consejos y explicaciones para ayudarle. Se hará referencia a ellos en el texto cuando sea necesario, y también se recogen como una lista que puedes consultar cuando quieras volver a releerlos. (¡Lo que se recomienda encarecidamente!)

Problemas de sistema de ecuaciones

Un fabricante de monopatines introduce una nueva línea de tablas. El fabricante hace un seguimiento de sus costes, que es la cantidad que gasta para producir las tablas, y de sus ingresos, que es la cantidad que gana con las ventas de sus tablas. ¿Cómo puede determinar la empresa si está obteniendo beneficios con su nueva línea? ¿Cuántas tablas de skate deben producirse y venderse para obtener un beneficio? En esta sección consideraremos ecuaciones lineales con dos variables para responder a estas y otras preguntas similares.

Para investigar situaciones como la del fabricante de monopatines, tenemos que reconocer que estamos tratando con más de una variable y probablemente con más de una ecuación. Un sistema de ecuaciones lineales consiste en dos o más ecuaciones lineales formadas por dos o más variables, de manera que todas las ecuaciones del sistema se consideran simultáneamente. Para encontrar la solución única de un sistema de ecuaciones lineales, debemos encontrar un valor numérico para cada variable del sistema que satisfaga todas las ecuaciones del sistema al mismo tiempo. Algunos sistemas lineales pueden no tener solución y otros pueden tener un número infinito de soluciones. Para que un sistema lineal tenga una solución única, debe haber al menos tantas ecuaciones como variables. Aun así, esto no garantiza una solución única.

Solucionador de sistemas de ecuaciones

Este artículo incluye una lista de referencias generales, pero carece de las correspondientes citas en línea. Por favor, ayude a mejorar este artículo introduciendo citas más precisas. (Octubre 2015) (Aprende cómo y cuándo eliminar este mensaje de la plantilla)

es un sistema de tres ecuaciones en las tres variables x, y, z. Una solución de un sistema lineal es una asignación de valores a las variables tal que todas las ecuaciones se satisfacen simultáneamente. Una solución del sistema anterior viene dada por la siguiente tripleta ordenada.

En matemáticas, la teoría de los sistemas lineales es la base y una parte fundamental del álgebra lineal, materia que se utiliza en la mayor parte de las matemáticas modernas. Los algoritmos computacionales para encontrar las soluciones son una parte importante del álgebra lineal numérica, y desempeñan un papel destacado en ingeniería, física, química, informática y economía. Un sistema de ecuaciones no lineales a menudo puede aproximarse mediante un sistema lineal (véase linealización), una técnica útil cuando se hace un modelo matemático o una simulación por ordenador de un sistema relativamente complejo.

Cómo resolver un sistema de ecuaciones

Los problemas prácticos en muchos campos de estudio -como la biología, la empresa, la química, la informática, la economía, la electrónica, la ingeniería, la física y las ciencias sociales- pueden reducirse a menudo a la resolución de un sistema de ecuaciones lineales. El álgebra lineal surgió de los intentos de encontrar métodos sistemáticos para resolver estos sistemas, por lo que es natural comenzar este libro estudiando las ecuaciones lineales.

La ecuación lineal es una línea recta (si y no son ambos cero), por lo que tal ecuación se llama ecuación lineal en las variables y . Sin embargo, a menudo es conveniente escribir las variables como , particularmente cuando hay más de dos variables involucradas. Una ecuación de la forma

se llama ecuación lineal en las variables . Aquí denotan números reales (llamados coeficientes de , respectivamente) y es también un número (llamado término constante de la ecuación). Un conjunto finito de ecuaciones lineales en las variables se llama sistema de ecuaciones lineales en dichas variables. Por lo tanto,

Un sistema puede no tener ninguna solución, o puede tener una solución única, o puede tener una familia infinita de soluciones.  Por ejemplo, el sistema , no tiene solución porque la suma de dos números no puede ser 2 y 3 simultáneamente. Un sistema que no tiene solución se llama inconsistente; un sistema con al menos una solución se llama consistente.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad