Skip to content

Ecuacion de segundo grado incompleta

junio 3, 2022

¿Cuál es el valor de x en la ecuación x2-16=0

Muchas ecuaciones cuadráticas no se pueden resolver mediante la factorización. Esto suele ocurrir cuando las raíces, o las respuestas, no son números racionales. Un segundo método para resolver ecuaciones cuadráticas implica el uso de la siguiente fórmula:

Al utilizar la fórmula cuadrática, debes tener en cuenta tres posibilidades. Estas tres posibilidades se distinguen por una parte de la fórmula llamada discriminante. El discriminante es el valor bajo el signo radical, b 2 – 4 ac. Una ecuación cuadrática con números reales como coeficientes puede tener lo siguiente:

No tiene solución en el sistema de números reales. Te puede interesar saber que el proceso de completar el cuadrado para resolver ecuaciones cuadráticas se utilizó en la ecuación ax 2 + bx + c = 0 para derivar la fórmula cuadrática.

Hojas de trabajo para resolver ecuaciones cuadráticas incompletas

Calcular ecuaciones de segundo grado online es posible gracias a nuestra calculadora, basta con introducir el valor de los coeficientes a, b y c para obtener las posibles soluciones de la ecuación. Dependiendo del valor del discriminante (b2-4ac), las raíces de la ecuación de segundo grado pueden ser muy diferentes:

Si tienes una ecuación cuadrática eIncompleta no podrás aplicar la fórmula anterior porque no conocerás el valor de ninguno de los coeficientes. Dependiendo de cada caso, hay que proceder de una manera u otra, por lo que lo explicamos a continuación:

El tercer y último caso de ecuación cuadrática incompleta es fácil de hacer. Simplemente tenemos que despejar el valor de x, así que vamos a pasar todos los términos que podamos a la derecha para dejar la incógnita. Esto se puede resumir en los siguientes pasos:

Nuestra calculadora de ecuaciones cuadráticas online ha sido diseñada para que puedas resolverlas de inmediato, ya sea porque quieres ahorrarte los cálculos o porque quieres comprobar que has hecho las operaciones correctamente.

Ejemplos de ecuación cuadrática incompleta

¿Qué es una ecuación cuadrática? Una ecuación cuadrática es una ecuación de segundo grado, lo que significa que contiene al menos un término al cuadrado. La forma estándar es ax² + bx + c = 0 con a, b y c siendo constantes, o coeficientes numéricos, y x siendo una variable desconocida. Sigue leyendo para ver ejemplos de ecuaciones cuadráticas en formas estándar y no estándar, así como una lista de términos de ecuaciones cuadráticas.

Ejemplos de ecuaciones en forma estándarLa manera más fácil de aprender ecuaciones cuadráticas es comenzar en la forma estándar. Aunque no todas las ecuaciones cuadráticas que veas estarán en esta forma, sigue siendo útil ver ejemplos. Ten en cuenta que la primera constante a no puede ser un cero.

Ejemplos de ecuaciones cuadráticas incompletasA medida que desarrolles tus habilidades de álgebra, encontrarás que no todas las ecuaciones cuadráticas están en la forma estándar. Mira ejemplos de diferentes casos de ecuaciones cuadráticas no estándar. Falta el coeficiente linealA veces una ecuación cuadrática no tiene el coeficiente lineal o la parte bx de la ecuación. Los ejemplos incluyen:

Función cuadrática incompleta

La resolución de ecuaciones es el tema central del álgebra. Todas las habilidades aprendidas conducen finalmente a la capacidad de resolver ecuaciones y simplificar las soluciones. En los capítulos anteriores hemos resuelto ecuaciones de primer grado. Ahora tienes las habilidades necesarias para resolver ecuaciones de segundo grado, que se conocen como ecuaciones cuadráticas.

Un teorema importante, que no se puede demostrar al nivel de este texto, afirma que “Toda ecuación polinómica de grado n tiene exactamente n raíces”. Este hecho nos dice que las ecuaciones cuadráticas siempre tendrán dos soluciones. Es posible que las dos soluciones sean iguales.

No intentaremos demostrar este teorema, pero fíjate bien en lo que dice. Nunca podemos multiplicar dos números y obtener una respuesta de cero a menos que al menos uno de los números sea cero. Por supuesto, ambos números pueden ser cero ya que (0)(0) = 0.

Las soluciones pueden indicarse escribiendo x = 6 y x = – 1 o utilizando la notación de conjuntos y escribiendo {6, – 1}, con lo que leemos “el conjunto solución para x es 6 y – 1”. En este texto utilizaremos la notación de conjuntos.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad