Cómo resolver dos incógnitas en una ecuación
Este es el tercero de nuestra serie de artículos breves en los que se tratan temas importantes para los técnicos en electrónica y electromecánica y para los estudiantes de técnico que se preparan para el mercado laboral actual. En esta serie, discutiremos algunas habilidades y temas cotidianos para los técnicos en ejercicio, así como algunas áreas que han sido identificadas como “difíciles de entender” por nuestros estudiantes de técnico mientras realizan análisis de circuitos generales. Los temas de discusión incluirán técnicas de reducción de circuitos, respuestas transitorias, así como áreas de dificultad cuando se trabaja con teoremas de redes lineales de corriente continua.
Muchos técnicos se encuentran con la dificultad de resolver ecuaciones de nodos o bucles que contienen múltiples cantidades desconocidas. En esta tercera entrega de la Serie de Técnicos en Práctica, revisaremos un medio para resolver tales ecuaciones para obtener las corrientes de bucle o los voltajes de nodo al realizar el análisis de la red de CC lineal. Los dos métodos de nivel técnico para resolver ecuaciones simultáneas con múltiples incógnitas que se utilizan cuando se trata de dos o tres ecuaciones son la “sustitución” y la “eliminación”. Para resolver un número determinado de incógnitas, requerimos que se proporcione el mismo número de ecuaciones. Por ejemplo, necesitaríamos dos ecuaciones para resolver dos incógnitas. Para resolver tres incógnitas se necesitan tres ecuaciones, y así sucesivamente.
Calculadora de reordenación de ecuaciones simultáneas
En un “sistema de ecuaciones”, se te pide que resuelvas dos o más ecuaciones al mismo tiempo. Cuando éstas tienen dos variables diferentes, como x e y, o a y b, puede ser complicado a primera vista ver cómo resolverlas. Afortunadamente, una vez que sabes lo que hay que hacer, todo lo que necesitas son conocimientos básicos de álgebra (y a veces algunos conocimientos de fracciones) para resolver el problema. Si eres un estudiante visual o si tu profesor te lo pide, aprende también a representar gráficamente las ecuaciones. La graficación puede ser útil para “ver lo que está pasando” o para comprobar tu trabajo, pero puede ser más lenta que los otros métodos, y no funciona bien para todos los sistemas de ecuaciones.
Resumen del artículoPara resolver sistemas de ecuaciones algebraicas que contengan dos variables, empieza por mover las variables a diferentes lados de la ecuación. Luego, divide ambos lados de la ecuación por una de las variables para resolver esa variable. A continuación, toma ese número y mételo en la fórmula para resolver la otra variable. Por último, toma tu respuesta y ponla en la ecuación original para resolver la otra variable. Para aprender a resolver sistemas de ecuaciones algebraicas mediante el método de eliminación, desplázate hacia abajo.
Cómo resolver 2 ecuaciones con 2 variables
, existía una respuesta única para x e y que hacía que cada frase fuera cierta al mismo tiempo. En algunas situaciones no se obtienen respuestas únicas o no se obtienen respuestas. Tienes que ser consciente de ello cuando utilices el método de suma/resta.
Cuando esto ocurre, el sistema de ecuaciones no tiene una solución única. De hecho, cualquier sustitución de a y b que haga que una de las ecuaciones sea verdadera, también hace que la otra ecuación sea verdadera. Por ejemplo, si a = -6 y b = 5, entonces ambas ecuaciones se hacen verdaderas.
Lo que tenemos aquí es realmente una sola ecuación escrita de dos maneras diferentes. En este caso, la segunda ecuación es en realidad la primera ecuación multiplicada por 2. La solución para esta situación es cualquiera de las ecuaciones originales o una forma simplificada de cualquiera de ellas.
En los Ejemplos 1-4, sólo se multiplicó una ecuación por un número para conseguir que los números delante de una letra fueran iguales u opuestos. A veces, cada ecuación debe multiplicarse por diferentes números para conseguir que los números delante de una letra sean iguales u opuestos.
Apuntes de ecuaciones simultáneas pdf
Una empresa quiere enviar unos widgets. Si el peso de la caja más un widget es de 6 libras, y el peso de la caja más dos widgets es de 10 libras, entonces ¿cuál es el peso de la caja y el peso del widget? Pon la respuesta en un par ordenado tal que el par ordenado sea (peso de la caja, peso del widget).
Explicación: Sea el peso de la caja representado por y el peso del widget representado por . Como el peso de la caja más el peso de un widget es de 6 libras, esto se puede representar con la ecuación
Ahora tenemos dos ecuaciones y dos incógnitas y podemos resolver para y . Para ello, resolvemos la primera ecuación para y la sustituimos en la segunda ecuación. Resolviendo la primera ecuación para obtenemos
Tutores de Física en Washington DC, Tutores de Español en Houston, Tutores de ISEE en Dallas Fort Worth, Tutores de Lectura en Washington DC, Tutores de Inglés en Nueva York, Tutores de Matemáticas en Los Angeles, Tutores de Álgebra en Phoenix, Tutores de Francés en Filadelfia, Tutores de LSAT en Houston