Saltar al contenido

Ecuaciones de 1 grado con una incognita

junio 5, 2022

Solucionador de ecuaciones de primer grado

Simplificando la ecuación llegamos a que es verdadera todo el tiempo, no depende del valor de , por lo que no importa el valor de la ecuación siempre es verdadera, y como tiene infinitos valores posibles tenemos infinitas soluciones para esta ecuación.

Elegimos 2 valores de y obtenemos el valor respectivo de y luego graficamos los dos puntos en un plano y el nuevo trazamos la recta que pasa por los dos puntos, y la coordenada del punto de intersección de la recta y el eje x es la solución de la ecuación.

Llamamos ecuación de segundo grado, a toda ecuación con la forma estándar con , y siendo números reales y distintos de cero. Se llama ecuación de segundo grado porque la mayor potencia de en esta ecuación es 2 (es decir ).

Ahora la resolución es sencilla ya que tenemos el producto de dos de primer grado igual a cero entonces sabemos con seguridad que o el primer término del producto es igual a cero o el segundo es igual a cero, lo que significa que o , resolvemos cada término de primer grado del lado izquierdo, obtenemos:

Ejercicios de ecuaciones de primer grado pdf

En matemáticas, una ecuación es una fórmula que expresa la igualdad de dos expresiones, conectándolas con el signo de igualdad =.[2][3] La palabra ecuación y sus afines en otros idiomas pueden tener significados sutilmente diferentes; por ejemplo, en francés una équation se define como la que contiene una o más variables, mientras que en inglés, cualquier fórmula bien formada que consiste en dos expresiones relacionadas con un signo de igualdad es una ecuación.[4]

Resolver una ecuación que contiene variables consiste en determinar qué valores de las variables hacen que la igualdad sea verdadera. Las variables para las que hay que resolver la ecuación se llaman también incógnitas, y los valores de las incógnitas que satisfacen la igualdad se llaman soluciones de la ecuación. Hay dos tipos de ecuaciones: las identidades y las ecuaciones condicionales. Una identidad es verdadera para todos los valores de las variables. Una ecuación condicional sólo es verdadera para determinados valores de las variables[5][6].

Una ecuación se escribe como dos expresiones, conectadas por un signo de igualdad (“=”)[2] Las expresiones de los dos lados del signo de igualdad se llaman “lado izquierdo” y “lado derecho” de la ecuación. Muy a menudo se supone que el lado derecho de una ecuación es cero. Asumir esto no reduce la generalidad, ya que se puede realizar restando el lado derecho de ambos lados.

Ejemplos de ecuaciones de primer grado en una variable

Las ecuaciones son de primer grado cuando pueden escribirse en la forma ax + b = c, donde x es una variable y a, b y c son constantes conocidas y a ¡a!=0. Discutimos las técnicas para resolver ecuaciones de primer grado en la sección 3.4 y de nuevo en la sección 3.5 al tratar las fórmulas. Además, encontrar las soluciones a las proporciones discutidas en las secciones 6.6 y 6.7 implica resolver ecuaciones de primer grado.

Este tema es uno de los más básicos e importantes para cualquier estudiante principiante de álgebra y se presenta de nuevo aquí para reforzarlo positivamente y como preparación para resolver una variedad de aplicaciones en las secciones 7.3, 7.4 y 7.5.

Hay exactamente una solución para una ecuación de primer grado en una variable. Esta afirmación puede demostrarse por el método de la contradicción. La prueba no se da aquí. Las ecuaciones que tienen más de una solución se discutirán en los capítulos 8, 9 y 10.

Esta última técnica tiene la ventaja de dejar sólo los coeficientes enteros y las constantes. Si hay más de una fracción, entonces cada término debe ser multiplicado por el LCM de los denominadores de las fracciones.

Cómo resolver ecuaciones de primer grado

Una ecuación de primer grado es aquella que, reducida a su forma más simple, contiene la letra o letras desconocidas elevadas sólo a la primera potencia. Así, las ecuaciones 5x -7=18 y 3x + 5x -2 = 34 -x son ecuaciones de primer grado. La ecuación 2×2 + 7 x -3x -2×2 = 28, tal como está escrita, no parece una ecuación de primer grado, ya que contiene la incógnita elevada a la segunda potencia. Sin embargo, cuando se escribe en la forma más simple juntando los términos iguales, los dos términos x2 desaparecen y la ecuación se reduce a 4x = 28. Por tanto, esta ecuación es de primer grado.

Ya hemos aprendido a resolver ecuaciones de primer grado sumando, restando, multiplicando o dividiendo ambos miembros de la ecuación por el mismo número. En estas páginas seguiremos aplicando estos métodos para resolver ecuaciones; sin embargo, ahora resolveremos ecuaciones que pueden contener tanto números negativos como positivos. Además, aprenderemos algunos “atajos” que nos facilitarán el trabajo.

Enunciemos una vez más los cuatro principios que hemos aplicado en la resolución de ecuaciones. Estos principios se aplican tanto a las ecuaciones que contienen números negativos como a las que contienen números positivos. Estos principios se denominan axiomas. Un axioma es una afirmación que se acepta sin pruebas.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad