Ejercicios de ecuaciones diferenciales con soluciones pdf
Mostrar respuestaSi y = ex entonces y ‘ = ex e y” = ex. El lado izquierdo de la e.d. resulta sery’ + y” = ex + ex = 2exy el lado derecho de la e.d. resulta ser2y = 2(ex) = 2ex.Como el lado izquierdo y el lado derecho de la e.d. resultaron iguales, y = ex es una solución de esta ecuación diferencial.
Mostrar respuestaSi y = xex entonces y’ = xex + ex.Este es el lado izquierdo de la ecuación diferencial. El lado derecho de la ecuación diferencial esxy = xex.Como los lados izquierdo y derecho de la e.d. no son iguales cuando y = xex, ésta NO es una solución de la ecuación diferencial.
Mostrar respuestaRespuestaCuando P = e-t, el lado izquierdo de la e.d. esEl lado derecho de la e.d. esP(1 – P) = P – P2, que no es igual a -P. Como los lados izquierdo y derecho de la e.d. no son iguales, P = e-t no es una solución de la ecuación diferencial.
Mostrar respuestaCuando y = x2, obtenemosEntonces el lado izquierdo de la e.d. esEl lado derecho de la e.d. esComo los lados izquierdo y derecho de la e.d. son iguales, y = x2 ES una solución de esta ecuación diferencial.
Ejemplos de ecuaciones diferenciales
Una ecuación que contiene la derivada de una función desconocida se llama ecuación diferencial. La tasa de cambio de una función en un punto está definida por las derivadas de la función. Una ecuación diferencial relaciona estas derivadas con las demás funciones. Las ecuaciones diferenciales se utilizan principalmente en los campos de la biología, la física, la ingeniería y muchos otros. El objetivo principal de la ecuación diferencial es estudiar las soluciones que satisfacen las ecuaciones y las propiedades de las soluciones. Vamos a discutir la definición, los tipos, los métodos para resolver la ecuación diferencial, el orden y el grado de la ecuación diferencial, los tipos de ecuaciones diferenciales, con ejemplos del mundo real y problemas de práctica.
Una ecuación diferencial es una ecuación que contiene al menos una derivada de una función desconocida, ya sea una derivada ordinaria o una derivada parcial. Supongamos que la tasa de cambio de una función y con respecto a x es inversamente proporcional a y, lo expresamos como dy/dx = k/y.
En cálculo, una ecuación diferencial es una ecuación que involucra la derivada (derivados) de la variable dependiente con respecto a la variable independiente (variables). La derivada no representa más que una tasa de cambio, y la ecuación diferencial nos ayuda a presentar una relación entre la cantidad que cambia con respecto al cambio de otra cantidad. y=f(x) sea una función donde y es una variable dependiente, f es una función desconocida, x es una variable independiente. He aquí algunas ecuaciones diferenciales.
Ejercicios de la Oda
24) Hallar la solución particular de la ecuación diferencial \( 8\dfrac{dx}{dt}=-2\cos(2t)-\cos(4t)\) que pasa por \( (π,π)\), dado que \( x=C-\frac{1}{8}{sin(2t)-\frac{1}{32}{sin(4t)\} es una solución general.
Recuerda que una familia de soluciones incluye soluciones de una ecuación diferencial que difieren por una constante. Para los ejercicios 48 – 52, utilice su calculadora para graficar una familia de soluciones de la ecuación diferencial dada. Utilice las condiciones iniciales desde \( y(t=0)=-10\) hasta \( y(t=0)=10\) aumentando en \( 2\). ¿Hay algún punto crítico en el que el comportamiento de la solución empiece a cambiar?
54) En el problema anterior, si la velocidad inicial de la pelota lanzada al aire es \( a=25\) pies/s, escribe la solución particular de la velocidad de la pelota. Resuelve para encontrar el momento en que la pelota llega al suelo.
56) [T] Lanzas una pelota de masa \( 1\) kilogramo hacia arriba con una velocidad de \( a=25\) m/s en Marte, donde la fuerza de gravedad es \( g=-3,711\) m/s2. Utiliza tu calculadora para aproximar cuánto tiempo está la pelota en el aire en Marte.
Tipos de ecuaciones diferenciales
Una ecuación diferencial lineal homogénea de primer orden es una ecuación de la forma \ds y’ + p(t)y=0\) o equivalentemente \ds y’ = -p(t)y\text{.})Ya hemos visto una ecuación diferencial lineal homogénea de primer orden, a saber, el modelo simple de crecimiento y decaimiento \ds =ky\text{.})
Como se puede adivinar, una ecuación diferencial lineal no homogénea de primer orden tiene la forma \ds y’ + p(t)y = f(t)\text{.}) No sólo está estrechamente relacionado en forma a la ecuación lineal homogénea de primer orden, podemos utilizar lo que sabemos acerca de la resolución de ecuaciones homogéneas para resolver la ecuación lineal general.
Vamos a discutir ahora cómo podemos encontrar todas las soluciones de una ecuación diferencial lineal no homogénea de primer orden. Supongamos que \(y_1(t)\Ny \N(y_2(t)\Nson soluciones de \N(\ds y’ + p(t)y = f(t)\Ntext{.}) Dejemos que \ds g(t)=y_1-y_2text{.}) Entonces
En otras palabras, \(\ds g(t)=y_1-y_2) es una solución de la ecuación homogénea \(\ds y’ + p(t)y = 0text{.}\} Dando la vuelta a esto, cualquier solución de la ecuación lineal \(\ds y’ + p(t)y = f(t)\text{,}) llámese \(y_1\text{,}) puede escribirse como \(y_2+g(t)\text{,}) para algún \(y_2\) particular y alguna solución \(g(t)\) de la ecuación homogénea \(\ds y’ + p(t)y = 0\text{. }\) Como ya sabemos encontrar todas las soluciones de la ecuación homogénea, encontrar una sola solución de la ecuación \ds y’ + p(t)y = f(t)\) nos dará todas ellas.