Saltar al contenido

Ecuaciones primer grado resueltas

junio 7, 2022

Hojas de trabajo para resolver ecuaciones de primer grado

Hay muchos métodos para resolver ecuaciones. La elección del método adecuado depende generalmente del grado de la ecuación, es decir, del exponente de la incógnita. Las ecuaciones más sencillas son las de primer grado. Cuanto más alto sea el grado de la ecuación, más compleja será.

El objetivo es encontrar el peso de esas cajas. Empecemos por plantear el problema que tendrá una ecuación de primer grado y la incógnita `x` representa el peso de una de las cajas (la solución es posible sólo si todas las cajas tienen el mismo peso). En el plato izquierdo de la balanza tenemos `2x + 500 + 100` y en el plato derecho tenemos `x + 250 + 500`. Teniendo en cuenta que se trata de una ecuación de primer grado, el método más habitual es tratar de aislar la incógnita dentro del primer miembro y luego encontraremos su valor. Hay que destacar que en el caso de la balanza podemos añadir o quitar a los platos el mismo peso y mantendrán el equilibrio. Según la analogía, en una ecuación podemos sumar o restar ambos miembros por una constante y siempre obtendremos una ecuación equivalente. Aquí está la solución (abreviada):

Ejemplos de ecuaciones de primer grado en una variable

Una ecuación de primer grado es aquella que, reducida a su forma más simple, contiene la letra o letras desconocidas elevadas sólo a la primera potencia. Así, las ecuaciones 5x -7=18 y 3x + 5x -2 = 34 -x son ecuaciones de primer grado. La ecuación 2×2 + 7 x -3x -2×2 = 28, tal como está escrita, no parece una ecuación de primer grado, ya que contiene la incógnita elevada a la segunda potencia. Sin embargo, cuando se escribe en la forma más simple juntando los términos iguales, los dos términos x2 desaparecen y la ecuación se reduce a 4x = 28. Por tanto, esta ecuación es de primer grado.

Ya hemos aprendido a resolver ecuaciones de primer grado sumando, restando, multiplicando o dividiendo ambos miembros de la ecuación por el mismo número. En estas páginas seguiremos aplicando estos métodos para resolver ecuaciones; sin embargo, ahora resolveremos ecuaciones que pueden contener tanto números negativos como positivos. Además, aprenderemos algunos “atajos” que nos facilitarán el trabajo.

Enunciemos una vez más los cuatro principios que hemos aplicado en la resolución de ecuaciones. Estos principios se aplican tanto a las ecuaciones que contienen números negativos como a las que contienen números positivos. Estos principios se denominan axiomas. Un axioma es una afirmación que se acepta sin pruebas.

Resolución de ecuaciones de primer grado en una variable

Las ecuaciones que incluyen incógnitas elevadas a una potencia de uno se conocen como ecuaciones de primer grado. También existen ecuaciones de segundo grado que incluyen al menos una variable elevada al cuadrado o a una potencia de dos. Las ecuaciones también pueden ser de tercer grado, de cuarto grado, etc. La ecuación de segundo grado más famosa es la ecuación cuadrática, que tiene la forma general ax2 +bx +c = 0; donde a, b y c son constantes y a no es igual a 0. La solución de este tipo de ecuación puede encontrarse a menudo mediante un método conocido como factorización.

Dado que la ecuación cuadrática es el producto de dos ecuaciones de primer grado, se puede factorizar en estas ecuaciones. Por ejemplo, el producto de las dos expresiones (x + 2)(x – 3) nos proporciona la expresión cuadrática x2 – x – 6. Las dos expresiones (x + 2) y (x – 3) se llaman factores de la expresión cuadrática x2 – x – 6. Al establecer cada factor de una ecuación cuadrática igual a cero, se pueden obtener soluciones. En esta ecuación cuadrática, las soluciones son x = -2 y x = 3.

Fórmula de la ecuación de primer grado

Una ecuación de primer grado es aquella que, reducida a su forma más simple, contiene la letra o letras desconocidas elevadas sólo a la primera potencia. Así, las ecuaciones 5x -7=18 y 3x + 5x -2 = 34 -x son ecuaciones de primer grado. La ecuación 2×2 + 7 x -3x -2×2 = 28, tal como está escrita, no parece una ecuación de primer grado, ya que contiene la incógnita elevada a la segunda potencia. Sin embargo, cuando se escribe en la forma más simple juntando los términos iguales, los dos términos x2 desaparecen y la ecuación se reduce a 4x = 28. Por tanto, esta ecuación es de primer grado.

Ya hemos aprendido a resolver ecuaciones de primer grado sumando, restando, multiplicando o dividiendo ambos miembros de la ecuación por el mismo número. En estas páginas seguiremos aplicando estos métodos para resolver ecuaciones; sin embargo, ahora resolveremos ecuaciones que pueden contener tanto números negativos como positivos. Además, aprenderemos algunos “atajos” que nos facilitarán el trabajo.

Enunciemos una vez más los cuatro principios que hemos aplicado en la resolución de ecuaciones. Estos principios se aplican tanto a las ecuaciones que contienen números negativos como a las que contienen números positivos. Estos principios se denominan axiomas. Un axioma es una afirmación que se acepta sin pruebas.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad