Problemas de logaritmos difíciles
En la sección sobre funciones logarítmicas, hemos resuelto algunas ecuaciones reescribiendo la ecuación en forma exponencial. Ahora que conocemos las propiedades de los logaritmos, tenemos métodos adicionales que podemos utilizar para resolver ecuaciones logarítmicas.
No siempre es posible o conveniente escribir las expresiones con la misma base. En ese caso, solemos tomar el logaritmo común o el logaritmo natural de ambos lados una vez aislada la exponencial.
Cuando tomamos el logaritmo de ambos lados obtendremos el mismo resultado tanto si usamos el logaritmo común como el natural (prueba a usar el logaritmo natural en el último ejemplo, ¿obtuviste el mismo resultado?) Cuando la exponencial tiene base e, usamos el logaritmo natural.
En las secciones anteriores pudimos resolver algunas aplicaciones que estaban modeladas con ecuaciones exponenciales. Ahora que tenemos muchas más opciones para resolver estas ecuaciones, podemos resolver más aplicaciones.
Los padres de Jermael invierten 10.000 dólares para sus gastos universitarios cuando cumple un año. Esperan que las inversiones valgan 50.000 dólares cuando cumpla 18 años. Si los intereses se acumulan continuamente, ¿qué tasa de crecimiento necesitarán aproximadamente para alcanzar su objetivo?
Ejercicios de ecuaciones trigonométricas
En la sección sobre funciones logarítmicas, hemos resuelto algunas ecuaciones reescribiendo la ecuación en forma exponencial. Ahora que tenemos las propiedades de los logaritmos, tenemos métodos adicionales que podemos utilizar para resolver ecuaciones logarítmicas.
No siempre es posible o conveniente escribir las expresiones con la misma base. En ese caso, solemos tomar el logaritmo común o el logaritmo natural de ambos lados una vez aislada la exponencial.
Cuando tomamos el logaritmo de ambos lados obtendremos el mismo resultado tanto si usamos el logaritmo común como el natural (prueba a usar el logaritmo natural en el último ejemplo, ¿obtuviste el mismo resultado?) Cuando la exponencial tiene base e, usamos el logaritmo natural.
En las secciones anteriores pudimos resolver algunas aplicaciones que estaban modeladas con ecuaciones exponenciales. Ahora que tenemos muchas más opciones para resolver estas ecuaciones, podemos resolver más aplicaciones.
2em}{0ex}} {veces al año.} |phantom{regla{5em}{0ex}}A=P{e}^{rt}hfill & & & & \text{cuando se compone continuamente.} |hfill |end{array}
Ejercicios de funciones lineales
Determina primero si la ecuación puede reescribirse de forma que cada lado utilice la misma base. Si es así, los exponentes pueden ser iguales entre sí. Si la ecuación no puede reescribirse de forma que cada lado utilice la misma base, entonces aplica el logaritmo a cada lado y utiliza las propiedades de los logaritmos para resolverla.
La propiedad uno a uno puede utilizarse si ambos lados de la ecuación pueden reescribirse como un único logaritmo con la misma base. Si es así, los argumentos se pueden igualar y la ecuación resultante se puede resolver algebraicamente. La propiedad uno a uno no puede utilizarse cuando cada lado de la ecuación no puede reescribirse como un único logaritmo con la misma base.
263. En química, el pH es una medida de la acidez y viene dada por la fórmula \(\mathrm{pH}=-\log \left(H^{+}\right)\), donde \(H^{+}\) es la concentración de iones de hidrógeno (medida en moles de hidrógeno por litro de solución.) Determine la concentración de iones de hidrógeno si el pH de una solución es \(4\).
264. El volumen del sonido, \(L\) en decibelios (dB), viene dado por la fórmula \(L=10 \log \left(I / 10^{-12}\right)\) donde \(I\) representa la intensidad del sonido en vatios por metro cuadrado. Determine la intensidad de una alarma que emite \(120\) dB de sonido.
Ejercicios de funciones exponenciales
En 1859, un terrateniente australiano llamado Thomas Austin liberó 24 conejos en la naturaleza para su caza. Como Australia tenía pocos depredadores y abundante comida, la población de conejos se disparó. En menos de diez años, la población de conejos se contaba por millones.
El crecimiento incontrolado de la población, como el de los conejos salvajes en Australia, puede modelarse con funciones exponenciales. Las ecuaciones resultantes de esas funciones exponenciales pueden resolverse para analizar y hacer predicciones sobre el crecimiento exponencial. En esta sección, aprenderemos técnicas para resolver funciones exponenciales.
En otras palabras, cuando una ecuación exponencial tiene la misma base en cada lado, los exponentes deben ser iguales. Esto también se aplica cuando los exponentes son expresiones algebraicas. Por tanto, podemos resolver muchas ecuaciones exponenciales utilizando las reglas de los exponentes para reescribir cada lado como una potencia con la misma base. A continuación, utilizamos el hecho de que las funciones exponenciales son uno a uno para establecer los exponentes iguales entre sí, y resolver la incógnita.Por ejemplo, consideremos la ecuación