Skip to content

Factorizacion ecuacion segundo grado

junio 7, 2022

Cómo completar un cuadrado

Este artículo trata sobre las ecuaciones algebraicas de grado dos y sus soluciones. Para la fórmula utilizada para encontrar las soluciones de dichas ecuaciones, véase Fórmula cuadrática. Para funciones definidas por polinomios de grado dos, véase Función cuadrática.

término. Los números a, b y c son los coeficientes de la ecuación y pueden distinguirse llamándolos, respectivamente, coeficiente cuadrático, coeficiente lineal y término constante o libre[1].

Los valores de x que satisfacen la ecuación se denominan soluciones de la misma, y raíces o ceros de la expresión en su lado izquierdo. Una ecuación cuadrática tiene como máximo dos soluciones. Si sólo hay una solución, se dice que es una raíz doble. Si todos los coeficientes son números reales, hay dos soluciones reales, o una única raíz doble real, o dos soluciones complejas. Una ecuación cuadrática siempre tiene dos raíces, si se incluyen las raíces complejas; y una raíz doble se cuenta por dos. Una ecuación cuadrática se puede descomponer en una ecuación equivalente

Resolver ecuaciones

y varios términos y/o constantes. Factorizar un polinomio significa descomponer la expresión en expresiones más pequeñas que se multiplican entre sí. Estas habilidades son de Álgebra I y superiores, y pueden ser difíciles de entender si tus habilidades matemáticas no están en este nivel.

Si tienes un polinomio bastante sencillo, puede que seas capaz de averiguar los factores tú mismo sólo con la vista. Por ejemplo, después de practicar, muchos matemáticos son capaces de saber que la expresión 4×2 + 4x + 1 tiene los factores (2x + 1) y (2x + 1) sólo por haberla visto tanto. (Obviamente, esto no será tan fácil con polinomios más complicados). Para este ejemplo, vamos a utilizar una expresión menos común:

Este método identificará todos los posibles factores de los términos a y c y los utilizará para averiguar cuáles deben ser los factores. Si los números son muy grandes o si otros métodos de tipo adivinatorio parecen llevar demasiado tiempo, utiliza este método[3].

Si te permiten usar una, una calculadora gráfica facilita mucho el proceso de factorización, especialmente en los exámenes estandarizados. Estas instrucciones son para una calculadora gráfica TI. Utilizaremos la ecuación de ejemplo:

Factorización de polinomios

En álgebra, una función cuadrática, un polinomio cuadrático, un polinomio de grado 2, o simplemente un cuadrático, es una función polinómica con una o más variables en la que el término de mayor grado es de segundo grado.

Un polinomio cuadrático con dos raíces reales (cruces del eje x) y, por tanto, sin raíces complejas. Algunos otros polinomios cuadráticos tienen su mínimo por encima del eje x, en cuyo caso no hay raíces reales y sí dos raíces complejas.

En general, puede haber un número arbitrariamente grande de variables, en cuyo caso la superficie resultante de poner a cero una función cuadrática se llama cuádrica, pero el término de mayor grado debe ser de grado 2, como x2, xy, yz, etc.

Cuando se utiliza el término “polinomio cuadrático”, los autores a veces quieren decir “que tiene grado exactamente 2”, y a veces “que tiene grado como máximo 2”. Si el grado es inferior a 2, se puede denominar “caso degenerado”. Por lo general, el contexto determinará a cuál de los dos se refiere.

. Las soluciones de esta ecuación se denominan raíces del polinomio cuadrático y se pueden encontrar mediante la factorización, la compleción del cuadrado, la gráfica, el método de Newton o el uso de la fórmula cuadrática. Cada polinomio cuadrático tiene una función cuadrática asociada, cuya gráfica es una parábola.

Fórmula cuadrática

Muchas ecuaciones cuadráticas no se pueden resolver mediante la factorización. Esto suele ocurrir cuando las raíces, o las respuestas, no son números racionales. Un segundo método para resolver ecuaciones cuadráticas implica el uso de la siguiente fórmula:

Al utilizar la fórmula cuadrática, debes tener en cuenta tres posibilidades. Estas tres posibilidades se distinguen por una parte de la fórmula llamada discriminante. El discriminante es el valor bajo el signo radical, b 2 – 4 ac. Una ecuación cuadrática con números reales como coeficientes puede tener lo siguiente:

No tiene solución en el sistema de números reales. Te puede interesar saber que el proceso de completar el cuadrado para resolver ecuaciones cuadráticas se utilizó en la ecuación ax 2 + bx + c = 0 para derivar la fórmula cuadrática.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad