¿Cuál de las siguientes es una ecuación de segundo grado
Para factorizar la cuadrática pura 3×2 – 15 = 0:3×2 = 15×2 = 15/3×2 = 5Las raíces de x2 son √5 y -√5√x2 = ±√5, y x = ±√5(los factores ±√5 son raíces cuadráticas)Uso de la cuadráticaLa aplicación de una ecuación cuadrática es a menudo la trayectoria de un objeto que es impulsado hacia arriba en algún ángulo. Como la gravedad siempre tira hacia el centro de la Tierra, un objeto después de ser lanzado no viaja en línea recta. Esta trayectoria puede describirse matemáticamente mediante ecuaciones cuadráticas.Una aplicación similar de una trayectoria es una nave espacial que mientras viaja pasa cerca de un planeta. El planeta ejerce su atracción gravitatoria sobre la nave provocando un ligero cambio en su trayectoria de vuelo que puede definirse como cuadrática. El cambio de dirección debe ser conocido para asegurar que la trayectoria de vuelo sigue siendo correcta para el destino de la nave espacial.Mientras que las ecuaciones cuadráticas proporcionan un resultado positivo y negativo para muchas aplicaciones del mundo real sólo se requiere uno de los dos resultados. Cuando los resultados positivos y negativos se grafican, crean una parábola.
Ejercicios de ecuaciones de segundo grado pdf
Desde hace mucho tiempo, los matemáticos han mostrado un gran interés por la resolución de ecuaciones de segundo grado (también conocidas como ecuaciones cuadráticas), es decir, ecuaciones cuyo mayor grado contiene x2 (utilizando las notaciones modernas habituales). Así, el primer texto conocido que se refiere a estas últimas se remonta a dos mil años antes de nuestra era, en la época de los babilonios. Es entonces Al-Khwarizmi, durante el siglo IX, quien estableció las fórmulas para la resolución sistemática de estas ecuaciones (por favor, consulte los enlaces dados al final de este post para los aspectos históricos).
En la actualidad, la metodología para resolver ecuaciones de segundo grado se basa en su forma canónica. Por ejemplo, si consideramos la ecuación x2 + 2x – 3 = 0, el trinomio x2 + 2x – 3 es como el principio de una identidad notable. En efecto, podemos escribir:
Sabemos que un producto de términos es igual a cero si y sólo si al menos uno de los términos es igual a cero (esto se debe a que el cero es el elemento absorbente de la operación de multiplicación). Por lo tanto, esta regla conduce al sistema:
Solucionador de ecuaciones cuadráticas
Simplificando la ecuación llegamos a que es verdadera todo el tiempo, no depende del valor de , por lo que no importa el valor de la ecuación siempre es verdadera, y como tiene infinitos valores posibles tenemos infinitas soluciones para esta ecuación.
Elegimos 2 valores de y obtenemos el valor respectivo de y luego graficamos los dos puntos en un plano y el nuevo trazamos la recta que pasa por los dos puntos, y la coordenada del punto de intersección de la recta y el eje x es la solución de la ecuación.
Llamamos ecuación de segundo grado, a toda ecuación con la forma estándar con , y siendo números reales y distintos de cero. Se llama ecuación de segundo grado porque la mayor potencia de en esta ecuación es 2 (es decir ).
Ahora la resolución es sencilla ya que tenemos el producto de dos de primer grado igual a cero entonces sabemos con seguridad que o el primer término del producto es igual a cero o el segundo es igual a cero, lo que significa que o , resolvemos cada término de primer grado del lado izquierdo, obtenemos:
Cómo resolver una ecuación de segundo grado
Este artículo trata sobre las ecuaciones algebraicas de grado dos y sus soluciones. Para la fórmula utilizada para encontrar soluciones a dichas ecuaciones, véase Fórmula cuadrática. Para funciones definidas por polinomios de grado dos, véase Función cuadrática.
término. Los números a, b y c son los coeficientes de la ecuación y pueden distinguirse llamándolos, respectivamente, coeficiente cuadrático, coeficiente lineal y término constante o libre[1].
Los valores de x que satisfacen la ecuación se denominan soluciones de la misma, y raíces o ceros de la expresión en su lado izquierdo. Una ecuación cuadrática tiene como máximo dos soluciones. Si sólo hay una solución, se dice que es una raíz doble. Si todos los coeficientes son números reales, hay dos soluciones reales, o una única raíz doble real, o dos soluciones complejas. Una ecuación cuadrática siempre tiene dos raíces, si se incluyen las raíces complejas; y una raíz doble se cuenta por dos. Una ecuación cuadrática se puede factorizar en una ecuación equivalente