Saltar al contenido

Formula para resolver ecuaciones de segundo grado

junio 7, 2022

Ejercicios de ecuaciones de segundo grado

Las ecuaciones cuadráticas son expresiones algebraicas de segundo grado y son de la forma ax2 + bx + c = 0. La palabra “cuadrática” deriva de la palabra “Quad” que significa cuadrado. En otras palabras, una ecuación cuadrática es una “ecuación de grado 2”. Hay muchos escenarios en los que se utiliza una ecuación cuadrática. ¿Sabías que cuando se lanza un cohete, su trayectoria se describe mediante una ecuación cuadrática? Además, una ecuación cuadrática tiene numerosas aplicaciones en física, ingeniería, astronomía, etc.

Las ecuaciones cuadráticas son ecuaciones de segundo grado en x que tienen como máximo dos respuestas para x. Estas dos respuestas para x también se llaman raíces de las ecuaciones cuadráticas y se designan como (α, β). Aprenderemos más sobre las raíces de una ecuación cuadrática en el siguiente contenido.

Una ecuación cuadrática es una ecuación algebraica de segundo grado en x. La ecuación cuadrática en su forma estándar es ax2 + bx + c = 0, donde a y b son los coeficientes, x es la variable y c es el término constante. La primera condición para que una ecuación sea cuadrática es que el coeficiente de x2 sea un término distinto de cero (a ≠0). Para escribir una ecuación cuadrática en forma estándar, se escribe primero el término de x2, seguido del término de x y, por último, se escribe el término constante. Los valores numéricos de a, b, c generalmente no se escriben como fracciones o decimales sino que se escriben como valores integrales.

Ejercicios de ecuaciones de segundo grado pdf

Muchas ecuaciones cuadráticas no se pueden resolver mediante la factorización. Esto es generalmente cierto cuando las raíces, o las respuestas, no son números racionales. Un segundo método para resolver ecuaciones cuadráticas implica el uso de la siguiente fórmula:

Al utilizar la fórmula cuadrática, debes tener en cuenta tres posibilidades. Estas tres posibilidades se distinguen por una parte de la fórmula llamada discriminante. El discriminante es el valor bajo el signo radical, b 2 – 4 ac. Una ecuación cuadrática con números reales como coeficientes puede tener lo siguiente:

No tiene solución en el sistema de números reales. Te puede interesar saber que el proceso de completar el cuadrado para resolver ecuaciones cuadráticas se utilizó en la ecuación ax 2 + bx + c = 0 para derivar la fórmula cuadrática.

Ejemplos de ecuaciones de segundo grado

Este artículo trata sobre las ecuaciones algebraicas de grado dos y sus soluciones. Para la fórmula utilizada para encontrar soluciones a dichas ecuaciones, véase Fórmula cuadrática. Para funciones definidas por polinomios de grado dos, véase Función cuadrática.

término. Los números a, b y c son los coeficientes de la ecuación y pueden distinguirse llamándolos, respectivamente, coeficiente cuadrático, coeficiente lineal y término constante o libre[1].

Los valores de x que satisfacen la ecuación se denominan soluciones de la misma, y raíces o ceros de la expresión en su lado izquierdo. Una ecuación cuadrática tiene como máximo dos soluciones. Si sólo hay una solución, se dice que es una raíz doble. Si todos los coeficientes son números reales, hay dos soluciones reales, o una única raíz doble real, o dos soluciones complejas. Una ecuación cuadrática siempre tiene dos raíces, si se incluyen las raíces complejas; y una raíz doble se cuenta por dos. Una ecuación cuadrática se puede descomponer en una ecuación equivalente

Fórmula de la ecuación cuadrática

Desde hace mucho tiempo, los matemáticos han mostrado un gran interés por la resolución de ecuaciones de segundo grado (también conocidas como ecuaciones cuadráticas), es decir, ecuaciones cuyo mayor grado contiene x2 (utilizando las notaciones modernas habituales). Así, el primer texto conocido que se refiere a estas últimas se remonta a dos mil años antes de nuestra era, en la época de los babilonios. Es entonces Al-Khwarizmi, durante el siglo IX, quien estableció las fórmulas para la resolución sistemática de estas ecuaciones (por favor, consulte los enlaces dados al final de este post para los aspectos históricos).

En la actualidad, la metodología para resolver ecuaciones de segundo grado se basa en su forma canónica. Por ejemplo, si consideramos la ecuación x2 + 2x – 3 = 0, el trinomio x2 + 2x – 3 es como el principio de una identidad notable. En efecto, podemos escribir:

Sabemos que un producto de términos es igual a cero si y sólo si al menos uno de los términos es igual a cero (esto se debe a que el cero es el elemento absorbente de la operación de multiplicación). Esta regla conduce, por tanto, al sistema:

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad