Skip to content

Guia de ejercicios de ecuaciones de primer grado

junio 5, 2022

Solucionador de ecuaciones de primer grado

Las ecuaciones son de primer grado cuando pueden escribirse en la forma ax + b = c, donde x es una variable y a, b y c son constantes conocidas y a ¡a!=0. Discutimos las técnicas para resolver ecuaciones de primer grado en la sección 3.4 y de nuevo en la sección 3.5 al tratar con fórmulas. Además, encontrar las soluciones a las proporciones discutidas en las secciones 6.6 y 6.7 implica resolver ecuaciones de primer grado.

Este tema es uno de los más básicos e importantes para cualquier estudiante principiante de álgebra y se presenta de nuevo aquí para reforzarlo positivamente y como preparación para resolver una variedad de aplicaciones en las secciones 7.3, 7.4 y 7.5.

Hay exactamente una solución para una ecuación de primer grado en una variable. Esta afirmación puede demostrarse por el método de la contradicción. La prueba no se da aquí. Las ecuaciones que tienen más de una solución se discutirán en los capítulos 8, 9 y 10.

Esta última técnica tiene la ventaja de dejar sólo los coeficientes enteros y las constantes. Si hay más de una fracción, entonces cada término debe ser multiplicado por el LCM de los denominadores de las fracciones.

Ecuación de primer grado en una variable

Muchas ecuaciones cuadráticas no se pueden resolver mediante la factorización. Esto es generalmente cierto cuando las raíces, o las respuestas, no son números racionales. Un segundo método para resolver ecuaciones cuadráticas implica el uso de la siguiente fórmula:

Al utilizar la fórmula cuadrática, debes tener en cuenta tres posibilidades. Estas tres posibilidades se distinguen por una parte de la fórmula llamada discriminante. El discriminante es el valor bajo el signo radical, b 2 – 4 ac. Una ecuación cuadrática con números reales como coeficientes puede tener lo siguiente:

No tiene solución en el sistema de números reales. Te puede interesar saber que el proceso de completar el cuadrado para resolver ecuaciones cuadráticas se utilizó en la ecuación ax 2 + bx + c = 0 para derivar la fórmula cuadrática.

Hojas de trabajo para resolver ecuaciones de primer grado

24) Hallar la solución particular de la ecuación diferencial \( 8\dfrac{dx}{dt}=-2\cos(2t)-\cos(4t)\) que pasa por \( (π,π)\), dado que \( x=C-\frac{1}{8}{sin(2t)-\frac{1}{32}{sin(4t)\} es una solución general.

Recuerda que una familia de soluciones incluye soluciones de una ecuación diferencial que difieren por una constante. Para los ejercicios 48 – 52, utilice su calculadora para graficar una familia de soluciones de la ecuación diferencial dada. Utilice las condiciones iniciales desde \( y(t=0)=-10\) hasta \( y(t=0)=10\) aumentando en \( 2\). ¿Hay algún punto crítico en el que el comportamiento de la solución empiece a cambiar?

54) En el problema anterior, si la velocidad inicial de la pelota lanzada al aire es \( a=25\) pies/s, escribe la solución particular de la velocidad de la pelota. Resuelve para encontrar el momento en que la pelota llega al suelo.

56) [T] Lanzas una pelota de masa \( 1\) kilogramo hacia arriba con una velocidad de \( a=25\) m/s en Marte, donde la fuerza de gravedad es \( g=-3,711\) m/s2. Utiliza tu calculadora para aproximar cuánto tiempo está la pelota en el aire en Marte.

Fórmula de la ecuación de primer grado

En muchos campos como la física, la biología o los negocios, a menudo se conoce o se supone una relación entre alguna cantidad desconocida y su tasa de cambio, que no implica ninguna derivada superior. Por ello, resulta interesante estudiar las ecuaciones diferenciales de primer orden en particular.

Una ecuación diferencial de primer orden es una ecuación de la forma \(F(t, y, y’)=0text{.}\) Una solución de una ecuación diferencial de primer orden es una función \(f(t)\) que hace que \ds F(t,f(t),f'(t))=0\) para todo valor de \(t\text{. Se entiende que la variable \ds F(t,f(t,f’))=0) para cualquier valor de \text{…}) Aquí, \ds F es una función de tres variables que etiquetamos como \text{,}) \ts{,} y \ts{,}) Se entiende que \ts{,y} aparecerá explícitamente en la ecuación aunque \ts{,t} y \ts{,y} no es necesario. La propia variable \(y\) depende de \(t\text{,}\) por lo que se entiende que \(y’\) debe ser la derivada de \(y\) con respecto a \(t\text{,}\) Dado que sólo aparece la primera derivada de \(y\), pero ninguna derivada de orden superior, se trata de una ecuación diferencial de primer orden.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad