Saltar al contenido

Metodos de resolucion de ecuaciones lineales con dos incognitas

junio 6, 2022

Resolución de ecuaciones lineales con 2 variables

¿Qué es un sistema lineal? A lo largo de la asignatura de Álgebra Lineal, nos interesará mucho la resolución de sistemas de ecuaciones lineales, o sistemas lineales.Un sistema lineal es un sistema de ecuaciones, definido para un conjunto de variables desconocidas, donde cada una de las variables es lineal (las variables son de primer grado, o elevadas a la potencia de ????).

Más adelante aprenderemos sobre las matrices y cómo utilizarlas para resolver sistemas lineales. Así que para tener una comprensión básica de lo que estamos haciendo cuando resolvemos sistemas, queremos aprovechar esta lección para revisar otros métodos básicos para resolver sistemas.En una clase introductoria de Álgebra, habríamos aprendido tres maneras de resolver sistemas de ecuaciones lineales: sustitución, eliminación y graficación. Repasemos los pasos de cada uno de esos métodos.Método de sustitución

Mirando el punto de intersección, parece que la solución es aproximadamente ???(3,75,2,75)??. En realidad, la solución es (27/7,19/7) aproximadamente (3,86,2,71), así que nuestra estimación visual de (3,75,2,75) no estaba tan lejos.

Problemas de práctica de dos ecuaciones y dos incógnitas

Parece que estás en un dispositivo con un ancho de pantalla “estrecho” (es decir, probablemente estés en un teléfono móvil). Debido a la naturaleza de las matemáticas de este sitio, es mejor verlo en modo horizontal. Si su dispositivo no está en modo apaisado, muchas de las ecuaciones se saldrán por el lado de su dispositivo (debería poder desplazarse para verlas) y algunos de los elementos del menú quedarán cortados debido al estrecho ancho de la pantalla.

Antes de hablar de cómo resolver los sistemas, deberíamos hablar de lo que es la solución de un sistema de ecuaciones. Una solución de un sistema de ecuaciones es un valor de \(x\) y un valor de \(y\) que, cuando se sustituye en las ecuaciones, satisface ambas ecuaciones al mismo tiempo.

Nótese que es importante que el par de números satisfaga ambas ecuaciones. Por ejemplo, \(x = 1\) y \(y = – 4\) satisfará la primera ecuación, pero no la segunda y por lo tanto no es una solución del sistema. Del mismo modo, \(x = – 1\) y \(y = 1\) satisfará la segunda ecuación, pero no la primera y por lo tanto no puede ser una solución del sistema.

Método de eliminación

Un fabricante de monopatines introduce una nueva línea de tablas. El fabricante hace un seguimiento de sus costes, que es la cantidad que gasta para producir las tablas, y de sus ingresos, que es la cantidad que gana con las ventas de sus tablas. ¿Cómo puede determinar la empresa si está obteniendo beneficios con su nueva línea? ¿Cuántas tablas de skate deben producirse y venderse para obtener un beneficio? En esta sección consideraremos ecuaciones lineales con dos variables para responder a estas y otras preguntas similares.

Para investigar situaciones como la del fabricante de monopatines, tenemos que reconocer que estamos tratando con más de una variable y probablemente con más de una ecuación. Un sistema de ecuaciones lineales consiste en dos o más ecuaciones lineales formadas por dos o más variables, de manera que todas las ecuaciones del sistema se consideran simultáneamente. Para encontrar la solución única de un sistema de ecuaciones lineales, debemos encontrar un valor numérico para cada variable del sistema que satisfaga todas las ecuaciones del sistema al mismo tiempo. Algunos sistemas lineales pueden no tener solución y otros pueden tener un número infinito de soluciones. Para que un sistema lineal tenga una solución única, debe haber al menos tantas ecuaciones como variables. Aun así, esto no garantiza una solución única.

Una ecuación dos incógnitas

Los sistemas de ecuaciones son ecuaciones múltiples que tienen una solución común. Los alumnos se encuentran con estos sistemas de ecuaciones cuando hay múltiples “incógnitas” -o variables- que aún no se les han dado. Cuando esto ocurre, el objetivo de los estudiantes es utilizar la información dada en las ecuaciones para resolver todas las variables.

Para resolver un sistema por medio de una gráfica, basta con representar gráficamente las ecuaciones dadas y encontrar el punto o los puntos en los que se cruzan. La coordenada de este punto te dará los valores de las variables que estás resolviendo. Esto es más eficiente cuando las ecuaciones ya están escritas en forma de intersección de pendientes.

El siguiente método es la sustitución. La sustitución se utiliza mejor cuando una de las ecuaciones está en términos de una de las variables, como y=2x+4, pero las ecuaciones siempre se pueden manipular. El primer paso de este método es resolver una de las ecuaciones para una variable. Una vez que se encuentra una expresión para la variable, se sustituye o se introduce la expresión en la otra ecuación donde estaba la variable original para resolver el valor numérico de la siguiente variable. El último paso es sustituir el valor numérico encontrado por su correspondiente variable en la ecuación original.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad