Skip to content

Resolucion de sistemas lineales de dos ecuaciones con dos incognitas

junio 4, 2022

Cómo resolver dos ecuaciones con dos incógnitas en ti-84

En un “sistema de ecuaciones”, se te pide que resuelvas dos o más ecuaciones al mismo tiempo. Cuando éstas tienen dos variables diferentes, como x e y, o a y b, puede ser complicado a primera vista ver cómo resolverlas. Afortunadamente, una vez que sabes lo que hay que hacer, todo lo que necesitas son conocimientos básicos de álgebra (y a veces algunos conocimientos de fracciones) para resolver el problema. Si eres un estudiante visual o si tu profesor te lo pide, aprende también a representar gráficamente las ecuaciones. La graficación puede ser útil para “ver lo que está pasando” o para comprobar tu trabajo, pero puede ser más lenta que los otros métodos, y no funciona bien para todos los sistemas de ecuaciones.

Resumen del artículoPara resolver sistemas de ecuaciones algebraicas que contengan dos variables, empieza por mover las variables a diferentes lados de la ecuación. Luego, divide ambos lados de la ecuación por una de las variables para resolver esa variable. A continuación, toma ese número y mételo en la fórmula para resolver la otra variable. Por último, toma tu respuesta y ponla en la ecuación original para resolver la otra variable. Para aprender a resolver sistemas de ecuaciones algebraicas mediante el método de eliminación, desplázate hacia abajo.

Dos ecuaciones dos incógnitas simbolab

Las ecuaciones lineales en dos variables son un sistema de ecuaciones con una solución única, sin soluciones o con infinitas soluciones. Un sistema lineal de ecuaciones puede tener ‘n’ número de variables. Una cosa importante a tener en cuenta al resolver ecuaciones lineales con n número de variables es que debe haber n ecuaciones para resolver y determinar el valor de las variables. El conjunto de soluciones obtenidas al resolver estas ecuaciones lineales es una recta. Las ecuaciones lineales en dos variables son las ecuaciones algebraicas que son de la forma y = mx + b, donde m es la pendiente y b es la intersección de y. Son las ecuaciones de primer orden. Por ejemplo, y = 2x+3 y 2y = 4x + 9 son ecuaciones lineales en dos variables.

Las ecuaciones lineales en dos variables son de primer orden de exponente 1 y tienen una, ninguna o infinitas soluciones. La forma estándar de una ecuación lineal en dos variables es ax+ by+ c= 0 donde x e y son las dos variables. Las soluciones también pueden escribirse en pares ordenados. La representación gráfica de las ecuaciones lineales en dos variables incluye dos rectas que pueden ser líneas de intersección, líneas paralelas o líneas coincidentes.

Calculadora de resolución de dos ecuaciones con dos incógnitas

Un fabricante de monopatines introduce una nueva línea de tablas. El fabricante hace un seguimiento de sus costes, que es la cantidad que gasta para producir las tablas, y de sus ingresos, que es la cantidad que gana con las ventas de sus tablas. ¿Cómo puede determinar la empresa si está obteniendo beneficios con su nueva línea? ¿Cuántas tablas de skate deben producirse y venderse para obtener un beneficio? En esta sección consideraremos ecuaciones lineales con dos variables para responder a estas y otras preguntas similares.

Para investigar situaciones como la del fabricante de monopatines, tenemos que reconocer que estamos tratando con más de una variable y probablemente con más de una ecuación. Un sistema de ecuaciones lineales consiste en dos o más ecuaciones lineales formadas por dos o más variables, de manera que todas las ecuaciones del sistema se consideran simultáneamente. Para encontrar la solución única de un sistema de ecuaciones lineales, debemos encontrar un valor numérico para cada variable del sistema que satisfaga todas las ecuaciones del sistema al mismo tiempo. Algunos sistemas lineales pueden no tener solución y otros pueden tener un número infinito de soluciones. Para que un sistema lineal tenga una solución única, debe haber al menos tantas ecuaciones como variables. Aun así, esto no garantiza una solución única.

Una ecuación dos incógnitas

Si la ecuación no es verdadera, existe una respuesta única para x e y que hace que cada frase sea verdadera al mismo tiempo. En algunas situaciones no se obtienen respuestas únicas o no se obtienen respuestas. Tienes que ser consciente de ello cuando utilices el método de suma/resta.

Cuando esto ocurre, el sistema de ecuaciones no tiene una solución única. De hecho, cualquier sustitución de a y b que haga que una de las ecuaciones sea verdadera, también hace que la otra ecuación sea verdadera. Por ejemplo, si a = -6 y b = 5, entonces ambas ecuaciones se hacen verdaderas.

Lo que tenemos aquí es realmente una sola ecuación escrita de dos maneras diferentes. En este caso, la segunda ecuación es en realidad la primera ecuación multiplicada por 2. La solución para esta situación es cualquiera de las ecuaciones originales o una forma simplificada de cualquiera de ellas.

En los Ejemplos 1-4, sólo se multiplicó una ecuación por un número para conseguir que los números delante de una letra fueran iguales u opuestos. A veces, cada ecuación debe multiplicarse por diferentes números para conseguir que los números delante de una letra sean iguales u opuestos.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad