Saltar al contenido

Resolver ecuaciones tercer grado

junio 6, 2022

Resolver la cúbica deprimida

En una ecuación cúbica, el mayor exponente es 3, la ecuación tiene 3 soluciones/raíces, y la ecuación en sí tiene la forma ax3+bx2+cx+d=0{displaystyle ax^{3}+bx^{2}+cx+d=0}. Aunque los cubos parecen intimidantes y, de hecho, pueden ser bastante difíciles de resolver, utilizando el enfoque correcto (y una buena cantidad de conocimientos básicos) se pueden domar incluso los cubos más complicados. Puedes intentar, entre otras opciones, usar la fórmula cuadrática, encontrar soluciones enteras o identificar discriminantes.

Resumen del artículoPara resolver una ecuación cúbica, empieza por determinar si tu ecuación tiene una constante. Si no la tiene, factoriza una x y usa la fórmula cuadrática para resolver la ecuación cuadrática restante. Si tiene una constante, no podrás utilizar la fórmula cuadrática. En su lugar, encuentra todos los factores de a y d en la ecuación y luego divide los factores de a entre los factores de d. Luego, introduce cada respuesta en la ecuación para ver cuál es igual a 0. El entero que sea igual a 0 es tu respuesta. Sigue leyendo para aprender a resolver una ecuación cúbica utilizando un enfoque discriminante.

Python resuelve una ecuación cúbica

Las soluciones de esta ecuación se llaman raíces de la función cúbica definida por el lado izquierdo de la ecuación. Si todos los coeficientes a, b, c y d de la ecuación cúbica son números reales, entonces tiene al menos una raíz real (esto es cierto para todas las funciones polinómicas de grado impar). Todas las raíces de la ecuación cúbica se pueden encontrar por los siguientes medios:

No es necesario que los coeficientes sean números reales. Gran parte de lo que se trata a continuación es válido para los coeficientes de cualquier campo con característica distinta de 2 y 3. Las soluciones de la ecuación cúbica no pertenecen necesariamente al mismo campo que los coeficientes. Por ejemplo, algunas ecuaciones cúbicas con coeficientes racionales tienen raíces que son números complejos irracionales (e incluso no reales).

En el siglo VII, el matemático astrónomo de la dinastía Tang, Wang Xiaotong, en su tratado matemático titulado Jigu Suanjing, estableció sistemáticamente y resolvió numéricamente 25 ecuaciones cúbicas de la forma x3 + px2 + qx = N, 23 de ellas con p, q ≠ 0, y dos de ellas con q = 0.[11]

Resolver la fórmula de la ecuación cúbica

Para incrustar este widget en una entrada de su blog de WordPress, copie y pegue el código corto de abajo en la fuente HTML:Para blogs de WordPress autoalojadosPara incrustar este widget en una entrada, instale el plugin Wolfram|Alpha Widget Shortcode y copie y pegue el código corto de arriba en la fuente HTML.Para incrustar un widget en la barra lateral de su blog, instale el plugin Wolfram|Alpha Widget Sidebar, y copie y pegue el ID del widget de abajo en el campo “id”:

Para añadir un widget a un sitio MediaWiki, el wiki debe tener instalada la Extensión de Widgets, así como el código del widget Wolfram|Alpha.Para incluir el widget en una página del wiki, pegue el código de abajo en la fuente de la página.Guardar en Mis WidgetsConstruir un nuevo widget

Fórmula cuártica

Simplificando la ecuación llegamos a que es verdadera todo el tiempo, no depende del valor de , por lo que no importa el valor de la ecuación es siempre verdadera, y como tiene infinitos valores posibles tenemos infinitas soluciones para esta ecuación.

Elegimos 2 valores de y obtenemos el valor respectivo de y luego graficamos los dos puntos en un plano y el nuevo trazamos la recta que pasa por los dos puntos, y la coordenada del punto de intersección de la recta y el eje x es la solución de la ecuación.

Llamamos ecuación de segundo grado, a toda ecuación con la forma estándar con , y siendo números reales y distintos de cero. Se llama ecuación de segundo grado porque la mayor potencia de en esta ecuación es 2 (es decir ).

Ahora la resolución es sencilla ya que tenemos el producto de dos de primer grado igual a cero entonces sabemos con seguridad que o el primer término del producto es igual a cero o el segundo es igual a cero, lo que significa que o , resolvemos cada término de primer grado del lado izquierdo, obtenemos:

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad