Saltar al contenido

Sistema de ecuaciones con 2 variables

junio 5, 2022

Sistema de ecuaciones problemas de monedas 3×3 pdf

En Resolución de ecuaciones lineales, aprendimos a resolver ecuaciones lineales con una variable. Ahora trabajaremos con dos o más ecuaciones lineales agrupadas, lo que se conoce como un sistema de ecuaciones lineales.

Una ecuación lineal en dos variables, como \(2x+y=7\), tiene un número infinito de soluciones. Su gráfica es una recta. Recuerda que cada punto de la recta es una solución de la ecuación y que cada solución de la ecuación es un punto de la recta.

Para resolver un sistema de dos ecuaciones lineales, queremos encontrar los valores de las variables que son soluciones de ambas ecuaciones. En otras palabras, buscamos los pares ordenados \((x,y)\Nque hacen que ambas ecuaciones sean verdaderas. Son las soluciones de un sistema de ecuaciones.

Para determinar si un par ordenado es una solución de un sistema de dos ecuaciones, sustituimos los valores de las variables en cada ecuación. Si el par ordenado hace que ambas ecuaciones sean verdaderas, es una solución del sistema.

La gráfica de una ecuación lineal es una recta. Cada punto de la recta es una solución de la ecuación. Para un sistema de dos ecuaciones, graficaremos dos rectas. Así podremos ver todos los puntos que son soluciones de cada ecuación. Y, al encontrar lo que las rectas tienen en común, encontraremos la solución del sistema.

Sistema de ecuaciones lineales

En un “sistema de ecuaciones” se pide que se resuelvan dos o más ecuaciones al mismo tiempo. Cuando éstas tienen dos variables diferentes, como x e y, o a y b, puede ser complicado a primera vista ver cómo resolverlas. Afortunadamente, una vez que sabes lo que hay que hacer, todo lo que necesitas son conocimientos básicos de álgebra (y a veces algunos conocimientos de fracciones) para resolver el problema. Si eres un estudiante visual o si tu profesor te lo pide, aprende también a representar gráficamente las ecuaciones. La gráfica puede ser útil para “ver lo que está pasando” o para comprobar tu trabajo, pero puede ser más lenta que los otros métodos, y no funciona bien para todos los sistemas de ecuaciones.

Resumen del artículoPara resolver sistemas de ecuaciones algebraicas que contienen dos variables, empieza por mover las variables a diferentes lados de la ecuación. Luego, divide ambos lados de la ecuación por una de las variables para resolver esa variable. A continuación, toma ese número y mételo en la fórmula para resolver la otra variable. Por último, toma tu respuesta y ponla en la ecuación original para resolver la otra variable. Para aprender a resolver sistemas de ecuaciones algebraicas mediante el método de eliminación, desplázate hacia abajo.

Resolver una ecuación con múltiples variables

Parece que estás en un dispositivo con un ancho de pantalla “estrecho” (es decir, probablemente estás en un teléfono móvil). Debido a la naturaleza de las matemáticas en este sitio, es mejor verlas en modo horizontal. Si su dispositivo no está en modo apaisado, muchas de las ecuaciones se saldrán por el lado de su dispositivo (debería poder desplazarse para verlas) y algunos de los elementos del menú quedarán cortados debido al estrecho ancho de la pantalla.

Antes de hablar de cómo resolver sistemas, deberíamos hablar de lo que es una solución de un sistema de ecuaciones. Una solución de un sistema de ecuaciones es un valor de \(x\) y un valor de \(y\) que, cuando se sustituye en las ecuaciones, satisface ambas ecuaciones al mismo tiempo.

Nótese que es importante que el par de números satisfaga ambas ecuaciones. Por ejemplo, \(x = 1\) y \(y = – 4\) satisfará la primera ecuación, pero no la segunda y por lo tanto no es una solución del sistema. Del mismo modo, \(x = – 1\) y \(y = 1\) satisfará la segunda ecuación, pero no la primera y por lo tanto no puede ser una solución del sistema.

Resolución de ecuaciones lineales con 2 variables

Las ecuaciones lineales en dos variables son un sistema de ecuaciones con una solución única, sin soluciones o con infinitas soluciones. Un sistema lineal de ecuaciones puede tener ‘n’ número de variables. Una cosa importante a tener en cuenta al resolver ecuaciones lineales con n número de variables es que debe haber n ecuaciones para resolver y determinar el valor de las variables. El conjunto de soluciones obtenidas al resolver estas ecuaciones lineales es una recta. Las ecuaciones lineales en dos variables son las ecuaciones algebraicas que son de la forma y = mx + b, donde m es la pendiente y b es la intersección de y. Son las ecuaciones de primer orden. Por ejemplo, y = 2x+3 y 2y = 4x + 9 son ecuaciones lineales en dos variables.

Las ecuaciones lineales en dos variables son de primer orden de exponente 1 y tienen una, ninguna o infinitas soluciones. La forma estándar de una ecuación lineal en dos variables es ax+ by+ c= 0 donde x e y son las dos variables. Las soluciones también pueden escribirse en pares ordenados. La representación gráfica de las ecuaciones lineales en dos variables incluye dos rectas que pueden ser líneas de intersección, líneas paralelas o líneas coincidentes.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad