Skip to content

Sistema de ecuaciones de tres variables

junio 8, 2022

Método de eliminación

Juan recibió una herencia de 12.000 dólares que dividió en tres partes e invirtió de tres maneras: en un fondo del mercado monetario que paga un 3% de interés anual; en bonos municipales que pagan un 4% de interés anual; y en fondos de inversión que pagan un 7% de interés anual. John invirtió 4.000 dólares más en fondos municipales que en bonos municipales. Ganó 670 dólares en intereses el primer año. ¿Cuánto invirtió Juan en cada tipo de fondo?

Entender el enfoque correcto para plantear problemas como éste hace que encontrar una solución sea cuestión de seguir un patrón. En esta sección resolveremos éste y otros problemas similares que implican tres ecuaciones y tres variables. Para ello se utilizan técnicas similares a las empleadas para resolver sistemas de dos ecuaciones en dos variables. Sin embargo, encontrar las soluciones de los sistemas de tres ecuaciones requiere un poco más de organización y un poco de gimnasia visual.

Para resolver sistemas de ecuaciones en tres variables, conocidos como sistemas de tres en tres, el objetivo principal es eliminar una variable cada vez para conseguir la sustitución por la espalda. Una solución a un sistema de tres ecuaciones en tres variables [latex]\left(x,y,z\right),\text{}[/latex] se llama un triple ordenado.

Sistema de ecuaciones lineales

Parece que estás en un dispositivo con un ancho de pantalla “estrecho” (es decir, probablemente estás en un teléfono móvil). Debido a la naturaleza de las matemáticas de este sitio, es mejor verlo en modo horizontal. Si su dispositivo no está en modo apaisado, muchas de las ecuaciones saldrán por el lado de su dispositivo (debería poder desplazarse para verlas) y algunos de los elementos del menú quedarán cortados debido al estrecho ancho de la pantalla.

Esta va a ser una sección bastante corta en el sentido de que realmente sólo va a consistir en un par de ejemplos para ilustrar cómo tomar los métodos de la sección anterior y utilizarlos para resolver un sistema lineal con tres ecuaciones y tres variables.

Vamos a tratar de encontrar los valores de \ (x\), \ (y\), y un \ (z\) que satisfaga las tres ecuaciones al mismo tiempo. Vamos a utilizar la eliminación para eliminar una de las variables de una de las ecuaciones y dos de las variables de otra de las ecuaciones. La razón para hacer esto será evidente una vez que lo hayamos hecho.

Resolver un sistema de ecuaciones lineales

Este artículo incluye una lista de referencias generales, pero carece de las correspondientes citas en línea. Por favor, ayude a mejorar este artículo introduciendo citas más precisas. (Octubre 2015) (Aprende cómo y cuándo eliminar este mensaje de la plantilla)

es un sistema de tres ecuaciones en las tres variables x, y, z. Una solución de un sistema lineal es una asignación de valores a las variables tal que todas las ecuaciones se satisfacen simultáneamente. Una solución del sistema anterior viene dada por la siguiente tripleta ordenada.

En matemáticas, la teoría de los sistemas lineales es la base y una parte fundamental del álgebra lineal, materia que se utiliza en la mayor parte de las matemáticas modernas. Los algoritmos computacionales para encontrar las soluciones son una parte importante del álgebra lineal numérica, y desempeñan un papel destacado en ingeniería, física, química, informática y economía. Un sistema de ecuaciones no lineales a menudo puede aproximarse mediante un sistema lineal (véase linealización), una técnica útil cuando se hace un modelo matemático o una simulación por ordenador de un sistema relativamente complejo.

Sistema de ecuaciones de resolución simbólica de Matlab

Un fabricante de monopatines introduce una nueva línea de tablas. El fabricante hace un seguimiento de sus costes, que es la cantidad que gasta para producir las tablas, y de sus ingresos, que es la cantidad que gana con las ventas de sus tablas. ¿Cómo puede determinar la empresa si está obteniendo beneficios con su nueva línea? ¿Cuántas tablas de skate deben producirse y venderse para obtener beneficios? En esta sección, consideraremos ecuaciones lineales con dos variables para responder a estas y otras preguntas similares.

Para investigar situaciones como la del fabricante de monopatines, tenemos que reconocer que estamos tratando con más de una variable y probablemente con más de una ecuación. Un sistema de ecuaciones lineales consiste en dos o más ecuaciones lineales formadas por dos o más variables, de manera que todas las ecuaciones del sistema se consideran simultáneamente. Para encontrar la solución única de un sistema de ecuaciones lineales, debemos encontrar un valor numérico para cada variable del sistema que satisfaga todas las ecuaciones del sistema al mismo tiempo. Algunos sistemas lineales pueden no tener solución y otros pueden tener un número infinito de soluciones. Para que un sistema lineal tenga una solución única, debe haber al menos tantas ecuaciones como variables. Aun así, esto no garantiza una solución única.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad