Resolución de ecuaciones lineales con matrices problemas de práctica
Este artículo incluye una lista de referencias generales, pero carece de las correspondientes citas en línea. Por favor, ayude a mejorar este artículo introduciendo citas más precisas. (Octubre de 2015) (Aprende cómo y cuándo eliminar este mensaje de la plantilla)
es un sistema de tres ecuaciones en las tres variables x, y, z. Una solución de un sistema lineal es una asignación de valores a las variables tal que todas las ecuaciones se satisfacen simultáneamente. Una solución del sistema anterior viene dada por la siguiente tripleta ordenada.
En matemáticas, la teoría de los sistemas lineales es la base y una parte fundamental del álgebra lineal, materia que se utiliza en la mayor parte de las matemáticas modernas. Los algoritmos computacionales para encontrar las soluciones son una parte importante del álgebra lineal numérica, y desempeñan un papel destacado en ingeniería, física, química, informática y economía. Un sistema de ecuaciones no lineales a menudo puede aproximarse mediante un sistema lineal (véase linealización), una técnica útil cuando se hace un modelo matemático o una simulación por ordenador de un sistema relativamente complejo.
Sistema de ecuaciones 3 variables
Juan recibió una herencia de 12.000 euros que dividió en tres partes e invirtió de tres maneras: en un fondo del mercado monetario que paga un 3% de interés anual; en bonos municipales que pagan un 4% de interés anual; y en fondos de inversión que pagan un 7% de interés anual. Juan invirtió 4.000 euros más en fondos municipales que en bonos municipales. El primer año ganó 670 euros en intereses. ¿Cuánto invirtió Juan en cada tipo de fondo?
Entender el enfoque correcto para plantear problemas como éste hace que encontrar una solución sea cuestión de seguir un patrón. En esta sección resolveremos éste y otros problemas similares que implican tres ecuaciones y tres variables. Para ello se utilizan técnicas similares a las empleadas para resolver sistemas de dos ecuaciones en dos variables. Sin embargo, encontrar las soluciones de los sistemas de tres ecuaciones requiere un poco más de organización y un poco de gimnasia visual.
Para resolver sistemas de ecuaciones en tres variables, conocidos como sistemas de tres en tres, la principal herramienta que utilizaremos se llama eliminación gaussiana, que recibe su nombre del prolífico matemático alemán Karl Friedrich Gauss. Aunque no hay un orden definitivo en el que se deben realizar las operaciones, sí hay pautas específicas sobre el tipo de movimientos que se pueden hacer. Podemos numerar las ecuaciones para llevar la cuenta de los pasos que aplicamos. El objetivo es eliminar una variable cada vez para conseguir la forma triangular superior, que es la forma ideal para un sistema de tres por tres, ya que permite una sustitución posterior directa para encontrar una solución que llamamos triple ordenada. Un sistema en forma triangular superior tiene el siguiente aspecto:
Problemas de sistemas de ecuaciones de 3 variables pdf
En esta sección, ampliaremos nuestro trabajo de resolución de un sistema de ecuaciones lineales. Hasta ahora hemos trabajado con sistemas de ecuaciones con dos ecuaciones y dos variables. Ahora trabajaremos con sistemas de tres ecuaciones con tres variables. Pero primero vamos a repasar lo que ya sabemos sobre la resolución de ecuaciones y sistemas que implican hasta dos variables.
Antes aprendimos que la gráfica de una ecuación lineal, \(ax+by=c\), es una recta. Cada punto de la recta, un par ordenado \((x,y)\N, es una solución de la ecuación. Para un sistema de dos ecuaciones con dos variables, graficamos dos rectas. Entonces podemos ver que todos los puntos que son soluciones de cada ecuación forman una recta. Y, al encontrar lo que las rectas tienen en común, encontraremos la solución del sistema.
La mayoría de las ecuaciones lineales en una variable tienen una solución, pero vimos que algunas ecuaciones, llamadas contradictorias, no tienen soluciones y para otras ecuaciones, llamadas identidades, todos los números son soluciones
Para resolver un sistema de tres ecuaciones lineales, queremos encontrar los valores de las variables que son soluciones de las tres ecuaciones. En otras palabras, buscamos la triple ordenada \((x,y,z)\Nque hace que las tres ecuaciones sean verdaderas. Estas son las soluciones del sistema de tres ecuaciones lineales con tres variables.
Resolución de sistemas lineales con 3 variables
Este libro tiene una licencia Creative Commons by-nc-sa 3.0. Consulte la licencia para obtener más detalles, pero eso significa básicamente que puede compartir este libro siempre y cuando acredite al autor (pero vea más abajo), no gane dinero con él, y lo ponga a disposición de todos los demás bajo los mismos términos.
Normalmente, el autor y el editor serían acreditados aquí. Sin embargo, el editor ha pedido que se elimine la atribución habitual de Creative Commons al editor original, los autores, el título y el URI del libro. Además, a petición del editor, se ha eliminado su nombre en algunos pasajes. Hay más información disponible en la página de atribución de este proyecto.
Para obtener más información sobre la fuente de este libro, o por qué está disponible de forma gratuita, consulte la página de inicio del proyecto. Allí podrá consultar o descargar otros libros. Para descargar un archivo .zip que contiene este libro para utilizarlo sin conexión, simplemente haga clic aquí.
Las aplicaciones del mundo real se modelan a menudo utilizando más de una variable y más de una ecuación. En esta sección, estudiaremos los sistemas lineales que constan de tres ecuaciones lineales con tres variables cada una. Por ejemplo,