Skip to content

Como resolver ecuaciones en problemas

junio 2, 2022

Hoja de trabajo sobre el uso de fórmulas para resolver problemas

Tienes un puesto de venta en un partido de baloncesto. Vendes perritos calientes y refrescos. Cada perrito caliente cuesta 1,50 $ y cada refresco 0,50 $. Al final de la noche ganaste un total de $78.50. Has vendido un total de 87 perritos calientes y refrescos juntos. Debes reportar el número de perros calientes vendidos y el número de refrescos vendidos. ¿Cuántos perritos calientes se vendieron y cuántos refrescos se vendieron?

1.    Empecemos por identificar la información importante:2. Define tus variables.En este problema, no sé cuántos perritos calientes o refrescos se vendieron. Así que esto es lo que representará cada variable. (Normalmente, la pregunta del final te dará esta información).Deja que x = el número de perritos calientes vendidosDeja que y = el número de refrescos vendidos3. Escribe dos ecuaciones. Una ecuación estará relacionada con el precio y otra con la cantidad (o número) de perritos calientes y refrescos vendidos.1,50x + 0,50y = 78,50 (Ecuación relacionada con el coste) x + y = 87 (Ecuación relacionada con el número vendido)4. ¡Resuelve!    Podemos elegir el método que queramos para resolver el sistema de ecuaciones. Yo voy a elegir el método de sustitución ya que puedo resolver fácilmente la 2ª ecuación para y.

Ejemplos de resolución de problemas matemáticos con soluciones

Los sistemas de ecuaciones son múltiples ecuaciones que tienen una solución común. Los alumnos se encuentran con estos sistemas de ecuaciones cuando hay múltiples “incógnitas” -o variables- que aún no se les han dado. Cuando esto ocurre, el objetivo de los alumnos es utilizar la información dada en las ecuaciones para resolver todas las variables.

Para resolver un sistema por medio de una gráfica, basta con representar gráficamente las ecuaciones dadas y encontrar el punto o los puntos en los que se cruzan. La coordenada de este punto te dará los valores de las variables que estás resolviendo. Esto es más eficiente cuando las ecuaciones ya están escritas en forma de intersección de pendientes.

El siguiente método es la sustitución. La sustitución se utiliza mejor cuando una de las ecuaciones está en términos de una de las variables, como y=2x+4, pero las ecuaciones siempre se pueden manipular. El primer paso de este método es resolver una de las ecuaciones para una variable. Una vez que se encuentra una expresión para la variable, se sustituye o se introduce la expresión en la otra ecuación donde estaba la variable original para resolver el valor numérico de la siguiente variable. El último paso es sustituir el valor numérico encontrado por su correspondiente variable en la ecuación original.

Ejemplos de resolución de problemas matemáticos

A continuación se ofrecen ejemplos prácticos de resolución de ecuaciones lineales. Las instrucciones se dan paso a paso con una explicación detallada utilizando la suma, la resta, la multiplicación y la división para resolver ecuaciones lineales.

1.  Resolver: (2x + 5)/(x + 4) = 1Solución: (2x + 5)/(x + 4) = 1⇒ 2x + 5 = 1(x + 4) ⇒ 2x + 5 = x + 4 ⇒ 2x – x = 4 – 5 (Si se transfiere la x positiva al lado izquierdo se convierte en x negativa y, de nuevo, el 5 positivo se convierte en 5 negativo) ⇒ x = -1 Por tanto, x = – 1 es la solución requerida de la ecuación (2x + 5)/(x + 4) = 1

Ejemplos de resolución de problemas en la vida real

Los problemas de palabras pueden ser complicados. A menudo se necesita un poco de práctica para convertir una frase en inglés en una frase matemática, que es uno de los primeros pasos para resolver problemas de palabras. En la tabla siguiente, se clasifican las palabras o frases comúnmente asociadas a los operadores matemáticos. Los problemas de palabras a menudo contienen estas palabras o palabras similares, por lo que es bueno ver qué operadores matemáticos están asociados a ellos.

Otro tipo de problema numérico implica números consecutivos. Los números consecutivos son números que van uno detrás de otro, como el 3, el 4 y el 5. Si buscamos varios números consecutivos es importante identificar primero cómo son con variables antes de plantear la ecuación.

Por ejemplo, digamos que quiero saber el siguiente número entero consecutivo después del 4. En términos matemáticos, sumaríamos 1 a 4 para obtener 5. Podemos generalizar esta idea de la siguiente manera: el entero consecutivo de cualquier número, x, es [latex]x+1[/latex]. Si continuamos con este patrón, podemos definir cualquier número de enteros consecutivos a partir de cualquier punto de partida. La siguiente tabla muestra cómo describir cuatro enteros consecutivos utilizando la notación algebraica.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad