Saltar al contenido

Ecuaciones con dos incognitas solucion

junio 8, 2022

Resolución de ecuaciones lineales con 2 variables

Este es el tercero de nuestra serie de artículos breves en los que se tratan temas importantes para los técnicos en electrónica y electromecánica y para los estudiantes de técnico que se preparan para el mercado laboral actual. En esta serie, discutiremos algunas habilidades y temas cotidianos para los técnicos en ejercicio, así como algunas áreas que han sido identificadas como “difíciles de entender” por nuestros estudiantes de técnico mientras realizan análisis de circuitos generales. Los temas de discusión incluirán técnicas de reducción de circuitos, respuestas transitorias, así como áreas de dificultad cuando se trabaja con teoremas de redes lineales de corriente continua.

Muchos técnicos encuentran dificultades para resolver ecuaciones de nodos o bucles que contienen múltiples cantidades desconocidas. En esta tercera entrega de la Serie de Técnicos en Práctica, revisaremos un medio para resolver tales ecuaciones para obtener las corrientes de bucle o los voltajes de nodo al realizar el análisis de la red de CC lineal. Los dos métodos de nivel técnico para resolver ecuaciones simultáneas con múltiples incógnitas que se utilizan cuando se trata de dos o tres ecuaciones son la “sustitución” y la “eliminación”. Para resolver un número determinado de incógnitas, requerimos que se proporcione el mismo número de ecuaciones. Por ejemplo, necesitaríamos dos ecuaciones para resolver dos incógnitas. Para resolver tres incógnitas se necesitan tres ecuaciones, y así sucesivamente.

Una ecuación dos incógnitas

Si la ecuación no es correcta, existe una respuesta única para x e y que hace que cada frase sea verdadera al mismo tiempo. En algunas situaciones no se obtienen respuestas únicas o no se obtienen respuestas. Tienes que ser consciente de ello cuando utilices el método de suma/resta.

Cuando esto ocurre, el sistema de ecuaciones no tiene una solución única. De hecho, cualquier sustitución de a y b que haga que una de las ecuaciones sea verdadera, también hace que la otra ecuación sea verdadera. Por ejemplo, si a = -6 y b = 5, entonces ambas ecuaciones se hacen verdaderas.

Lo que tenemos aquí es realmente una sola ecuación escrita de dos maneras diferentes. En este caso, la segunda ecuación es en realidad la primera ecuación multiplicada por 2. La solución para esta situación es cualquiera de las ecuaciones originales o una forma simplificada de cualquiera de ellas.

En los Ejemplos 1-4, sólo se multiplicó una ecuación por un número para conseguir que los números delante de una letra fueran iguales u opuestos. A veces, cada ecuación debe multiplicarse por diferentes números para conseguir que los números delante de una letra sean iguales u opuestos.

Cómo resolver 2 ecuaciones con 2 variables

En Resolución de ecuaciones lineales aprendimos a resolver ecuaciones lineales con una variable. Ahora trabajaremos con dos o más ecuaciones lineales agrupadas, lo que se conoce como un sistema de ecuaciones lineales.

Una ecuación lineal en dos variables, como \(2x+y=7\), tiene un número infinito de soluciones. Su gráfica es una recta. Recuerda que cada punto de la recta es una solución de la ecuación y que cada solución de la ecuación es un punto de la recta.

Para resolver un sistema de dos ecuaciones lineales, queremos encontrar los valores de las variables que son soluciones de ambas ecuaciones. En otras palabras, buscamos los pares ordenados \((x,y)\Nque hacen que ambas ecuaciones sean verdaderas. Son las soluciones de un sistema de ecuaciones.

Para determinar si un par ordenado es una solución de un sistema de dos ecuaciones, sustituimos los valores de las variables en cada ecuación. Si el par ordenado hace que ambas ecuaciones sean verdaderas, es una solución del sistema.

La gráfica de una ecuación lineal es una recta. Cada punto de la recta es una solución de la ecuación. Para un sistema de dos ecuaciones, graficaremos dos rectas. Así podremos ver todos los puntos que son soluciones de cada ecuación. Y, al encontrar lo que las rectas tienen en común, encontraremos la solución del sistema.

Solucionador de ecuaciones diofantinas

Una empresa quiere enviar unos widgets.    Si el peso de la caja más un widget es de 6 libras, y el peso de la caja más dos widgets es de 10 libras, entonces ¿cuál es el peso de la caja y el peso del widget?    Pon la respuesta en un par ordenado tal que el par ordenado sea (peso de la caja, peso del widget).

Explicación: Sea el peso de la caja representado por y el peso del widget representado por .    Como el peso de la caja más el peso de un widget es de 6 libras, esto se puede representar con la ecuación

Ahora tenemos dos ecuaciones y dos incógnitas y podemos resolver para y .    Para ello, resolvemos la primera ecuación para y la sustituimos en la segunda ecuación.    Resolviendo la primera ecuación para obtenemos

Tutores de Física en Washington DC, Tutores de Español en Houston, Tutores de ISEE en Dallas Fort Worth, Tutores de Lectura en Washington DC, Tutores de Inglés en Nueva York, Tutores de Matemáticas en Los Angeles, Tutores de Álgebra en Phoenix, Tutores de Francés en Filadelfia, Tutores de LSAT en Houston

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad