Problemas de práctica de álgebra
¿Qué es una ecuación cuadrática? Una ecuación cuadrática es una ecuación de segundo grado, lo que significa que contiene al menos un término al cuadrado. La forma estándar es ax² + bx + c = 0, siendo a, b y c constantes o coeficientes numéricos, y x una variable desconocida. Sigue leyendo para ver ejemplos de ecuaciones cuadráticas en formas estándar y no estándar, así como una lista de términos de ecuaciones cuadráticas.
Ejemplos de ecuaciones en forma estándarLa manera más fácil de aprender ecuaciones cuadráticas es comenzar en la forma estándar. Aunque no todas las ecuaciones cuadráticas que veas estarán en esta forma, sigue siendo útil ver ejemplos. Ten en cuenta que la primera constante a no puede ser un cero.
Ejemplos de ecuaciones cuadráticas incompletasA medida que desarrolles tus habilidades de álgebra, encontrarás que no todas las ecuaciones cuadráticas están en la forma estándar. Mira ejemplos de diferentes casos de ecuaciones cuadráticas no estándar. Falta el coeficiente linealA veces una ecuación cuadrática no tiene el coeficiente lineal o la parte bx de la ecuación. Los ejemplos incluyen:
Ejercicios de ecuaciones lineales
¿Qué es una ecuación cuadrática? Una ecuación cuadrática es una ecuación de segundo grado, lo que significa que contiene al menos un término al cuadrado. La forma estándar es ax² + bx + c = 0, siendo a, b y c constantes o coeficientes numéricos, y x una variable desconocida. Sigue leyendo para ver ejemplos de ecuaciones cuadráticas en formas estándar y no estándar, así como una lista de términos de ecuaciones cuadráticas.
Ejemplos de ecuaciones en forma estándarLa manera más fácil de aprender ecuaciones cuadráticas es comenzar en la forma estándar. Aunque no todas las ecuaciones cuadráticas que veas estarán en esta forma, sigue siendo útil ver ejemplos. Ten en cuenta que la primera constante a no puede ser un cero.
Ejemplos de ecuaciones cuadráticas incompletasA medida que desarrolles tus habilidades de álgebra, encontrarás que no todas las ecuaciones cuadráticas están en la forma estándar. Mira ejemplos de diferentes casos de ecuaciones cuadráticas no estándar. Falta el coeficiente linealA veces una ecuación cuadrática no tiene el coeficiente lineal o la parte bx de la ecuación. Los ejemplos incluyen:
Problemas de práctica de factorización de ecuaciones cuadráticas
Las funciones cuadráticas son fáciles de reconocer. La expresión polinómica conocida como cuadrática contiene una variable que se eleva al cuadrado, lo que la convierte en una ecuación de 2º grado, y la gráfica tiene forma de U. Las expresiones cuadráticas que son iguales a cero se llaman ecuaciones cuadráticas.
Para encontrar las soluciones de las ecuaciones cuadráticas, también conocidas como ceros o raíces, se establece la expresión cuadrática igual a cero y luego se factoriza. Los valores de x identifican el punto en el que la gráfica toca el eje x. Hay varios métodos que puedes utilizar para factorizar ecuaciones cuadráticas.
Para el producto de 6, los factores 1 y 6 suman 7. Dentro de dos conjuntos de paréntesis, agrega las constantes de 6 y 1 a x respectivamente, luego establece cada binomio igual a cero y resuelve para determinar las raíces de las ecuaciones.
Una ecuación cuadrática que es la diferencia de dos cuadrados también se conoce como ecuación DOTS. Si puedes reconocer qué ecuaciones cuadráticas son DOTS (diferencia de dos cuadrados), puedes ahorrarte tiempo al factorizar ecuaciones cuadráticas.
Hoja de trabajo de la fórmula cuadrática
Cuando resolvimos ecuaciones cuadráticas en la última sección completando el cuadrado, seguimos siempre los mismos pasos. Al final del conjunto de ejercicios, te habrás preguntado “¿no hay una forma más fácil de hacer esto?”. La respuesta es “sí”. Los matemáticos buscan patrones cuando hacen las cosas una y otra vez para facilitar su trabajo. En este apartado deduciremos y utilizaremos una fórmula para encontrar la solución de una ecuación cuadrática.
Ya hemos visto cómo resolver una fórmula para una variable específica “en general”, de modo que haríamos los pasos algebraicos una sola vez, y luego usaríamos la nueva fórmula para encontrar el valor de la variable específica. Ahora recorreremos los pasos para completar el cuadrado utilizando la forma general de una ecuación cuadrática para resolver una ecuación cuadrática para \(x\).
Para utilizar la fórmula cuadrática, sustituimos los valores de \(a,b\), y \(c\) de la forma estándar en la expresión del lado derecho de la fórmula. Luego simplificamos la expresión. El resultado es el par de soluciones de la ecuación cuadrática.