Saltar al contenido

Problemas de primer grado ecuaciones

junio 6, 2022

Solucionador de ecuaciones de primer grado

En muchos campos como la física, la biología o los negocios, a menudo se conoce o se supone una relación entre alguna cantidad desconocida y su tasa de cambio, que no implica ninguna derivada superior. Por lo tanto, es interesante estudiar las ecuaciones diferenciales de primer orden en particular.

Una ecuación diferencial de primer orden es una ecuación de la forma \(F(t, y, y’)=0text{.}\) Una solución de una ecuación diferencial de primer orden es una función \(f(t)\) que hace que \ds F(t,f(t),f'(t))=0\) para todo valor de \(t\text{. Se entiende que la variable \ds F(t,f(t,f’))=0) para cualquier valor de \text{…}) Aquí, \ds F es una función de tres variables que etiquetamos como \text{,}) \ts{,} y \ts{,}) Se entiende que \ts{,} aparecerá explícitamente en la ecuación, aunque \ts{,t} y \ts{,y} no es necesario. La propia variable \(y\) depende de \(t\text{,}\) por lo que se entiende que \(y’\) debe ser la derivada de \(y\) con respecto a \(t\text{,}\) Dado que sólo aparece la primera derivada de \(y\), pero ninguna derivada de orden superior, se trata de una ecuación diferencial de primer orden.

Ejercicios de ecuaciones de primer grado pdf

Las ecuaciones que implican incógnitas elevadas a una potencia de uno se conocen como ecuaciones de primer grado. También existen ecuaciones de segundo grado que implican al menos una variable elevada al cuadrado o a una potencia de dos. Las ecuaciones también pueden ser de tercer grado, de cuarto grado, etc. La ecuación de segundo grado más famosa es la ecuación cuadrática, que tiene la forma general ax2 +bx +c = 0; donde a, b y c son constantes y a no es igual a 0. La solución de este tipo de ecuación puede encontrarse a menudo mediante un método conocido como factorización.

Dado que la ecuación cuadrática es el producto de dos ecuaciones de primer grado, se puede factorizar en estas ecuaciones. Por ejemplo, el producto de las dos expresiones (x + 2)(x – 3) nos proporciona la expresión cuadrática x2 – x – 6. Las dos expresiones (x + 2) y (x – 3) se llaman factores de la expresión cuadrática x2 – x – 6. Al establecer cada factor de una ecuación cuadrática igual a cero, se pueden obtener soluciones. En esta ecuación cuadrática, las soluciones son x = -2 y x = 3.

Hojas de trabajo para resolver ecuaciones de primer grado

En esta sección se asume que el alumno sabe resolver ecuaciones básicas de primer grado. En la sección de problemas, los problemas con estrella suponen que el alumno también sabe resolver ecuaciones cuadráticas.

El hecho de que hayas planteado una ecuación a partir de un problema de palabras no significa que hayas terminado. Tienes que resolver la ecuación. Y luego, una vez que hayas encontrado la incógnita, tienes que asegurarte de que sabes cuál es la pregunta, porque si no respondes a la pregunta que te han hecho, ¡no tendrás una solución correcta!

Preguntas1. La suma de un número y 15 es uno más que el triple del número. ¿Cuál es el número? 2. El producto de un número por seis es 30 más que el número. ¿Cuál es la mitad del número? 3. La edad actual de Hera es la mitad de la que tendrá dentro de 10 años. ¿Cuántos años tendrá Hera dentro de 10 años? 4. La población de una ciudad era de 142.000 habitantes, y aumentó a razón de 1.200 cada año hasta llegar a los 184.000 habitantes. ¿Cuántos años aumentó la población? 5. El producto de 5 y cuatro más que un número es nueve veces el número. ¿Cuál es el número? 6. El precio de un libro aumentó un 10%, y el nuevo precio es de 13,20 dólares. ¿Cuál habría sido el precio de dos libros antes del cambio de precio? 7. El doble de la suma de un número y cinco da el triple de la suma del número y 2. ¿Cuál es el número? ¿Cuál es el número? 8. * El producto de un número por dos más que el número es 48. ¿Cuál es el número? ¿Cuál es el número? 9. * El producto de uno menos que un número y uno más que un número es uno menos que diez veces el número. ¿Cuál es el número? 10. Si un número se incrementa por cuatro y el resultado se duplica, y este resultado se eleva al cuadrado, se obtiene un número que es ocho más que 68 veces el número original. ¿En qué mes se celebra la Navidad? Asigna esta página de referenciaHaz clic aquí para asignar esta página de referencia a tus alumnos.Escribir ecuacionesUsar fórmulas para resolver problemas de palabras

Inecuaciones de primer grado en una variable

Una ecuación de primer grado es aquella que, reducida a su forma más simple, contiene la letra o letras desconocidas elevadas sólo a la primera potencia. Así, las ecuaciones 5x -7=18 y 3x + 5x -2 = 34 -x son ecuaciones de primer grado. La ecuación 2×2 + 7 x -3x -2×2 = 28, tal como está escrita, no parece una ecuación de primer grado, ya que contiene la incógnita elevada a la segunda potencia. Sin embargo, cuando se escribe en la forma más simple juntando los términos iguales, los dos términos x2 desaparecen y la ecuación se reduce a 4x = 28. Por tanto, esta ecuación es de primer grado.

Ya hemos aprendido a resolver ecuaciones de primer grado sumando, restando, multiplicando o dividiendo ambos miembros de la ecuación por el mismo número. En estas páginas seguiremos aplicando estos métodos para resolver ecuaciones; sin embargo, ahora resolveremos ecuaciones que pueden contener tanto números negativos como positivos. Además, aprenderemos algunos “atajos” que nos facilitarán el trabajo.

Enunciemos una vez más los cuatro principios que hemos aplicado en la resolución de ecuaciones. Estos principios se aplican tanto a las ecuaciones que contienen números negativos como a las que contienen números positivos. Estos principios se denominan axiomas. Un axioma es una afirmación que se acepta sin pruebas.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad