Saltar al contenido

Resolver ecuaciones de tres incognitas

junio 9, 2022

Matlab resolver tres ecuaciones tres incógnitas

Este es el tercero de nuestra serie de artículos breves en los que se tratan temas importantes para los técnicos en electrónica y electromecánica y para los estudiantes de técnico que se preparan para el mercado laboral actual. En esta serie, discutiremos algunas habilidades y temas cotidianos para los técnicos en ejercicio, así como algunas áreas que han sido identificadas como “difíciles de entender” por nuestros estudiantes de técnico al realizar análisis de circuitos generales. Los temas de discusión incluirán técnicas de reducción de circuitos, respuestas transitorias, así como áreas de dificultad cuando se trabaja con teoremas de redes lineales de corriente continua.

Muchos técnicos encuentran dificultades para resolver ecuaciones de nodos o bucles que contienen múltiples cantidades desconocidas. En esta tercera entrega de la Serie de Técnicos en Práctica, revisaremos un medio para resolver tales ecuaciones para obtener las corrientes de bucle o los voltajes de nodo al realizar el análisis de la red de CC lineal. Los dos métodos de nivel técnico para resolver ecuaciones simultáneas con múltiples incógnitas que se utilizan cuando se trata de dos o tres ecuaciones son la “sustitución” y la “eliminación”. Para resolver un número determinado de incógnitas, requerimos que se proporcione el mismo número de ecuaciones. Por ejemplo, necesitaríamos dos ecuaciones para resolver dos incógnitas. Para resolver tres incógnitas se necesitan tres ecuaciones, y así sucesivamente.

3 variables 2 ecuaciones

=−2×2+1×1+1×(−2)−2×0+1×1+1×4−2×1+1×(−2)+1×(−2)−15×2+8×1+5×(−2)−15×0+8×1+5×4−15×1+8×(−2)+5×(−2)6×2+(−3)×1+(−2)×(−2)6×0+(−3)×1+(−2)×46×1+(−3)×(−2)+(−2)×(−2)=−55−6−3228−4113−1116. En el ejemplo anterior, hemos resuelto una ecuación matricial utilizando la inversa de una matriz. Sin embargo, nos dieron la inversa de la matriz 3×3,

resolver una ecuación matricial dada.Ejemplo 2: Resolver una ecuación matricial encontrando la inversa de una matrizResolver 1-1-111-1110=9-116 usando la inversa de una matriz.Respuesta En este ejemplo, necesitamos resolver una ecuación matricial. Para resolverla

Método de eliminación

Para este conjunto de ecuaciones, sólo hay una combinación de valores para x e y que satisfaga ambas. Cualquiera de las dos ecuaciones, consideradas por separado, tiene infinidad de soluciones (x,y) válidas, pero juntas sólo hay una. Al trazar un gráfico, esta condición se hace evidente:

Cada línea es en realidad un continuo de puntos que representan los posibles pares de soluciones de x e y para cada ecuación. Cada ecuación, por separado, tiene un número infinito de pares ordenados de soluciones (x,y). Sólo hay un punto en el que se cruzan las dos funciones lineales x + y = 24 y 2x – y = -6 (en el que una de sus muchas soluciones independientes resulta ser válida para ambas ecuaciones), y es cuando x es igual a un valor de 6 e y es igual a un valor de 18.

Sin embargo, normalmente la gráfica no es una forma muy eficiente de determinar el conjunto de soluciones simultáneas para dos o más ecuaciones. Es especialmente poco práctico para sistemas de tres o más variables. En un sistema de tres variables, por ejemplo, la solución se encontraría mediante la intersección de puntos de tres planos en un espacio de coordenadas tridimensional, un escenario nada fácil de visualizar.

Solucionador de sistemas de ecuaciones

Juan recibió una herencia de 12.000 dólares que dividió en tres partes e invirtió de tres maneras: en un fondo del mercado monetario que paga un 3% de interés anual; en bonos municipales que pagan un 4% de interés anual; y en fondos de inversión que pagan un 7% de interés anual. John invirtió 4.000 dólares más en fondos municipales que en bonos municipales. Ganó 670 dólares en intereses el primer año. ¿Cuánto invirtió Juan en cada tipo de fondo?

Entender el enfoque correcto para plantear problemas como éste hace que encontrar una solución sea cuestión de seguir un patrón. En esta sección resolveremos éste y otros problemas similares que implican tres ecuaciones y tres variables. Para ello se utilizan técnicas similares a las empleadas para resolver sistemas de dos ecuaciones en dos variables. Sin embargo, encontrar las soluciones de los sistemas de tres ecuaciones requiere un poco más de organización y un poco de gimnasia visual.

Para resolver sistemas de ecuaciones en tres variables, conocidos como sistemas de tres en tres, el objetivo principal es eliminar una variable cada vez para conseguir la sustitución por la espalda. Una solución a un sistema de tres ecuaciones en tres variables [latex]\left(x,y,z\right),\text{}[/latex] se llama un triple ordenado.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad