Skip to content

Sistema de ecuaciones ejercicios resueltos

junio 7, 2022

Problemas y respuestas de sistemas de ecuaciones de 3 variables

Para los ejercicios 41-45, grafique el sistema de ecuaciones y diga si el sistema es consistente, inconsistente o dependiente y si el sistema tiene una solución, ninguna solución o infinitas soluciones.

59) Un músico cobra \(C(x)=64x+20.000\), donde \(x\) es el número total de asistentes al concierto. El local cobra \(\$80\) por entrada. ¿Después de cuántas personas compran entradas, el local alcanza el punto de equilibrio, y cuál es el valor del total de entradas vendidas en ese momento?

60) Una fábrica de guitarras tiene un coste de producción \(C(x)=75x+50.000\). Si la empresa necesita alcanzar el punto de equilibrio después de \(150\) unidades vendidas, ¿a qué precio deberían vender cada guitarra? Redondea al dólar más cercano y escribe la función de ingresos.

63) El coste de puesta en marcha de un restaurante es de 120.000 dólares, y cada comida cuesta 10 dólares. Si cada comida se vende por \(\$15\), ¿después de cuántas comidas el restaurante alcanza el punto de equilibrio?

64) Una empresa de mudanzas cobra una tarifa fija de 150 dólares y 5 dólares adicionales por cada caja. Si un servicio de taxi cobrara \(\$20\) por cada caja, ¿cuántas cajas necesitaría para que le saliera más barato utilizar la empresa de mudanzas, y cuál sería el coste total?

Sistema de ecuaciones problemas de palabras y respuestas pdf

En Resolución de ecuaciones lineales, aprendimos a resolver ecuaciones lineales con una variable. Ahora trabajaremos con dos o más ecuaciones lineales agrupadas, lo que se conoce como un sistema de ecuaciones lineales.

Una ecuación lineal en dos variables, como 2x+y=7,2x+y=7, tiene un número infinito de soluciones. Su gráfica es una recta. Recuerda que cada punto de la recta es una solución de la ecuación y que cada solución de la ecuación es un punto de la recta.

Para resolver un sistema de dos ecuaciones lineales, queremos encontrar los valores de las variables que son soluciones de ambas ecuaciones. En otras palabras, buscamos los pares ordenados (x,y)(x,y) que hacen que ambas ecuaciones sean verdaderas. Estas se llaman soluciones de un sistema de ecuaciones.

Para determinar si un par ordenado es una solución de un sistema de dos ecuaciones, sustituimos los valores de las variables en cada ecuación. Si el par ordenado hace que ambas ecuaciones sean verdaderas, es una solución del sistema.

La gráfica de una ecuación lineal es una recta. Cada punto de la recta es una solución de la ecuación. Para un sistema de dos ecuaciones, graficaremos dos rectas. Así podremos ver todos los puntos que son soluciones de cada ecuación. Y, al encontrar lo que las rectas tienen en común, encontraremos la solución del sistema.

Sistema de ecuaciones cómo resolver

Hemos resuelto sistemas de ecuaciones lineales por medio de gráficos y por sustitución. La gráfica funciona bien cuando los coeficientes de las variables son pequeños y la solución tiene valores enteros. La sustitución funciona bien cuando podemos resolver fácilmente una ecuación para una de las variables y no tener demasiadas fracciones en la expresión resultante.

El tercer método para resolver sistemas de ecuaciones lineales se llama Método de Eliminación. Cuando resolvimos un sistema por sustitución, empezamos con dos ecuaciones y dos variables y lo redujimos a una ecuación con una variable. Esto es lo que haremos también con el método de eliminación, pero tendremos una forma diferente de llegar a él.

El método de eliminación se basa en la propiedad de adición de la igualdad. La propiedad de adición de la igualdad dice que cuando se agrega la misma cantidad a ambos lados de una ecuación, se mantiene la igualdad. Extenderemos la propiedad de igualdad de la adición para decir que cuando se añaden cantidades iguales a ambos lados de una ecuación, los resultados son iguales.

Para resolver un sistema de ecuaciones por eliminación, empezamos con ambas ecuaciones en forma estándar. Luego decidimos qué variable será más fácil de eliminar. ¿Cómo lo decidimos? Queremos que los coeficientes de una variable sean opuestos, para poder sumar las ecuaciones y eliminar esa variable.

Sistema de ecuaciones problemas de palabras y respuestas

Tienes un puesto de venta en un partido de baloncesto. Vendes perritos calientes y refrescos. Cada perrito caliente cuesta 1,50 $ y cada refresco cuesta 0,50 $. Al final de la noche ganaste un total de $78.50. Has vendido un total de 87 perritos calientes y refrescos juntos. Debes reportar el número de perros calientes vendidos y el número de refrescos vendidos. ¿Cuántos perritos calientes se vendieron y cuántos refrescos se vendieron?

1.    Empecemos por identificar la información importante:2. Define tus variables.En este problema, no sé cuántos perritos calientes o refrescos se vendieron. Así que esto es lo que representará cada variable. (Normalmente, la pregunta del final te dará esta información).Deja que x = el número de perritos calientes vendidosDeja que y = el número de refrescos vendidos3. Escribe dos ecuaciones. Una ecuación estará relacionada con el precio y otra con la cantidad (o número) de perritos calientes y refrescos vendidos.1,50x + 0,50y = 78,50 (Ecuación relacionada con el coste) x + y = 87 (Ecuación relacionada con el número vendido)4. ¡Resuelve!    Podemos elegir el método que queramos para resolver el sistema de ecuaciones. Yo voy a elegir el método de sustitución ya que puedo resolver fácilmente la 2ª ecuación para y.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad