Álgebra – Ejercicios resueltos
Un sistema de ecuaciones lineales (o sistema lineal) es un grupo de ecuaciones (lineales) que tienen más de una incógnita. Las incógnitas aparecen en varias ecuaciones, pero no es necesario que estén en todas ellas. Lo que hacen estas ecuaciones es relacionar todas las incógnitas entre sí. Por ejemplo,
No siempre hay una solución e incluso puede haber un número infinito de soluciones. Si sólo hay una solución (un valor para cada incógnita, como en el ejemplo anterior), se dice que el sistema es un sistema dependiente consistente. No hablaremos de otros tipos de sistemas.
Para resolver un sistema dependiente consistente, necesitamos al menos el mismo número de ecuaciones que de incógnitas. En este apartado resolveremos sistemas lineales de dos ecuaciones y dos incógnitas con los métodos que describimos a continuación, que se basan en la obtención de una ecuación de primer grado (una ecuación lineal).
Para qué valor (s) de k el par de ecuaciones `kx + 3y = k
No siempre hay una solución o puede haber infinitas soluciones. Si sólo hay una solución (un valor para cada incógnita, como el ejemplo anterior) decimos que el sistema es dependiente consistente. No hablaremos de los otros tipos porque en esta sección sólo estudiaremos los sistemas dependientes consistentes.
2. Para resolver un sistema (dependiente consistente) necesitamos al menos el mismo número de ecuaciones que de incógnitas. En este apartado resolveremos sistemas (lineales) de dos ecuaciones y dos incógnitas con los métodos que describimos a continuación, que se basan en la obtención de una ecuación de primer grado:
Cómo igualar una ecuación
Parece que estás en un dispositivo con un ancho de pantalla “estrecho” (es decir, probablemente estás en un teléfono móvil). Debido a la naturaleza de las matemáticas en este sitio, es mejor verlas en modo horizontal. Si su dispositivo no está en modo apaisado, muchas de las ecuaciones se saldrán por el lado del dispositivo (debería poder desplazarse para verlas) y algunos de los elementos del menú quedarán cortados debido al estrecho ancho de la pantalla.
He intentado que estos apuntes sean lo más autocontenidos posible, por lo que toda la información necesaria para leerlos es de una clase de Cálculo o Álgebra o está contenida en otras secciones de los apuntes.
Conceptos básicos – En este capítulo introducimos muchos de los conceptos y definiciones básicas que se encuentran en un curso típico de ecuaciones diferenciales. También echaremos un vistazo a los campos de dirección y cómo pueden utilizarse para determinar algunos de los comportamientos de las soluciones de las ecuaciones diferenciales.
Definiciones – En esta sección se introducen algunas de las definiciones y conceptos comunes en un curso de ecuaciones diferenciales, incluyendo orden, lineal vs. no lineal, condiciones iniciales, problema de valor inicial e intervalo de validez.
Resolver un sistema de ecuaciones lineales mediante la descomposición LU
Este es el tercero de nuestra serie de artículos breves en los que se tratan temas importantes para los técnicos en electrónica y electromecánica y para los estudiantes de técnico que se preparan para la fuerza de trabajo actual. En esta serie, discutiremos algunas habilidades y temas cotidianos para los técnicos en ejercicio, así como algunas áreas que han sido identificadas como “difíciles de entender” por nuestros estudiantes de técnico mientras realizan análisis de circuitos generales. Los temas de discusión incluirán técnicas de reducción de circuitos, respuestas transitorias, así como áreas de dificultad cuando se trabaja con teoremas de redes lineales de corriente continua.
Muchos técnicos encuentran dificultades para resolver ecuaciones de nodos o bucles que contienen múltiples cantidades desconocidas. En esta tercera entrega de la Serie de Técnicos en Práctica, revisaremos un medio para resolver tales ecuaciones para obtener las corrientes de bucle o los voltajes de nodo al realizar el análisis de la red de CC lineal. Los dos métodos de nivel técnico para resolver ecuaciones simultáneas con múltiples incógnitas que se utilizan cuando se trata de dos o tres ecuaciones son la “sustitución” y la “eliminación”. Para resolver un número determinado de incógnitas, requerimos que se proporcione el mismo número de ecuaciones. Por ejemplo, necesitaríamos dos ecuaciones para resolver dos incógnitas. Para resolver tres incógnitas se necesitan tres ecuaciones, y así sucesivamente.