Ejercicios de ecuaciones de primer grado pdf
En un examen típico de Matemáticas 1, varias preguntas requieren la resolución de ecuaciones e inecuaciones. En esta sección, revisaremos los diferentes tipos de ecuaciones e inecuaciones que encontrarás y los métodos para resolverlas.
El principio básico al que debes atenerte para resolver cualquier ecuación es que puedes manipularla de cualquier manera siempre que hagas lo mismo en ambos lados. Por ejemplo, puedes sumar el mismo número a cada lado, restar el mismo número a cada lado, multiplicar o dividir cada lado por el mismo número (excepto 0), elevar al cuadrado cada lado, tomar la raíz cuadrada de cada lado (si las cantidades son positivas), tomar el recíproco de cada lado, tomar el logaritmo de cada lado, etc. Estos comentarios se aplican también a las desigualdades. Sin embargo, hay que tener mucho cuidado al trabajar con inecuaciones porque algunos procedimientos, como multiplicar o dividir por un número negativo y tomar recíprocos, invierten las inecuaciones.
Las ecuaciones e inecuaciones más sencillas que tendrás que resolver en el examen de Matemáticas 1 tienen una sola variable y no tienen exponentes. Se llaman ecuaciones e inecuaciones de primer grado o lineales. Para resolverlas siempre puedes utilizar el método de los seis pasos que se describe a continuación.
Hojas de trabajo para resolver ecuaciones de primer grado
Simplificando la ecuación llegamos a que es verdadera todo el tiempo, no depende del valor de , por lo que no importa el valor de la ecuación siempre es verdadera, y como tiene infinitos valores posibles tenemos infinitas soluciones para esta ecuación.
Elegimos 2 valores de y obtenemos el valor respectivo de y luego graficamos los dos puntos en un plano y el nuevo trazamos la recta que pasa por los dos puntos, y la coordenada del punto de intersección de la recta y el eje x es la solución de la ecuación.
Llamamos ecuación de segundo grado, a toda ecuación con la forma estándar con , y siendo números reales y distintos de cero. Se llama ecuación de segundo grado porque la mayor potencia de en esta ecuación es 2 (es decir ).
Ahora la resolución es sencilla ya que tenemos el producto de dos de primer grado igual a cero entonces sabemos con seguridad que o el primer término del producto es igual a cero o el segundo es igual a cero, lo que significa que o , resolvemos cada término de primer grado del lado izquierdo, obtenemos:
Ecuaciones de segundo grado
Las ecuaciones son de primer grado cuando pueden escribirse en la forma ax + b = c, donde x es una variable y a, b y c son constantes conocidas y a a!=0. Discutimos las técnicas para resolver ecuaciones de primer grado en la sección 3.4 y de nuevo en la sección 3.5 al tratar con fórmulas. Además, encontrar las soluciones a las proporciones discutidas en las secciones 6.6 y 6.7 implica resolver ecuaciones de primer grado.
Este tema es uno de los más básicos e importantes para cualquier estudiante principiante de álgebra y se presenta de nuevo aquí para reforzarlo positivamente y como preparación para resolver una variedad de aplicaciones en las secciones 7.3, 7.4 y 7.5.
Hay exactamente una solución para una ecuación de primer grado en una variable. Esta afirmación puede demostrarse por el método de la contradicción. La prueba no se da aquí. Las ecuaciones que tienen más de una solución se discutirán en los capítulos 8, 9 y 10.
Esta última técnica tiene la ventaja de dejar sólo los coeficientes enteros y las constantes. Si hay más de una fracción, entonces cada término debe ser multiplicado por el LCM de los denominadores de las fracciones.
Fórmula de la ecuación de primer grado
Para factorizar la cuadrática pura 3×2 – 15 = 0:3×2 = 15×2 = 15/3×2 = 5Las raíces de x2 son √5 y -√5√x2 = ±√5, y x = ±√5(los factores ±√5 son raíces cuadráticas)Uso de la cuadráticaLa aplicación de una ecuación cuadrática es a menudo la trayectoria de un objeto que es impulsado hacia arriba en algún ángulo. Como la gravedad siempre tira hacia el centro de la Tierra, un objeto después de ser lanzado no viaja en línea recta. Esta trayectoria puede describirse matemáticamente mediante ecuaciones cuadráticas.Una aplicación similar de una trayectoria es una nave espacial que mientras viaja pasa cerca de un planeta. El planeta ejerce su atracción gravitatoria sobre la nave provocando un ligero cambio en su trayectoria de vuelo que puede definirse como cuadrática. El cambio de dirección debe ser conocido para asegurar que la trayectoria de vuelo sigue siendo correcta para el destino de la nave espacial.Mientras que las ecuaciones cuadráticas proporcionan un resultado positivo y negativo para muchas aplicaciones del mundo real sólo se requiere uno de los dos resultados. Cuando los resultados positivos y negativos se grafican, crean una parábola.