Saltar al contenido

Ecuaciones diferenciales homogeneas cambio de variable

junio 8, 2022

Calculadora de ecuaciones diferenciales homogéneas

ResumenAunque sólo implementa un número relativamente pequeño de comandos relacionados con este tema, el tratamiento de MATLAB de las ecuaciones diferenciales es, sin embargo, muy eficiente. Veremos cómo podemos utilizar estos comandos para resolver algebraicamente cada tipo de ecuación diferencial. También se implementan métodos numéricos para la solución aproximada de ecuaciones y sistemas de ecuaciones.Palabras claveEstas palabras clave han sido añadidas por la máquina y no por los autores. Este proceso es experimental y las palabras clave pueden actualizarse a medida que el algoritmo de aprendizaje mejore.

En: MATLAB Differential Equations. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-0310-1_2Download citationShare this chapterAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard

Ecuaciones diferenciales de segundo orden con cambio de variables

Por otra parte, una ecuación diferencial es homogénea si es una función homogénea de la función desconocida y sus derivadas. En el caso de las ecuaciones diferenciales lineales, esto significa que no hay términos constantes. Las soluciones de cualquier ecuación diferencial ordinaria lineal de cualquier orden pueden deducirse por integración a partir de la solución de la ecuación homogénea obtenida al eliminar el término constante.

El término homogéneo fue aplicado por primera vez a las ecuaciones diferenciales por Johann Bernoulli en la sección 9 de su artículo de 1726 De integraionibus aequationum differentialium (Sobre la integración de ecuaciones diferenciales)[2].

Una ecuación diferencial lineal es homogénea si es una ecuación lineal homogénea en la función desconocida y sus derivadas. Se deduce que, si φ(x) es una solución, también lo es cφ(x), para cualquier constante (no nula) c. Para que esta condición se cumpla, cada término no nulo de la ecuación diferencial lineal debe depender de la función desconocida o de cualquier derivada de ella. Una ecuación diferencial lineal que no cumple esta condición se llama inhomogénea.

Pde cambio de variables

Los pasos para el cambio de variables en una ecuación diferencial separableA veces nos dan una ecuación diferencial de la forma ???y’=Q(x)-P(x)y?? y nos piden que encontremos una solución general de la ecuación, que será una ecuación para ???y?? en términos de ???x??.En este caso, puede ser muy útil utilizar un cambio de variable para encontrar la solución. Para utilizar un cambio de variable, seguiremos estos pasos: Sustituye “u” por “y”, de modo que la ecuación se convierta en “u” = Q(x)-P(x)y”.Resuelve “y”.Toma la derivada de ambos lados para obtener “y”. Dado que “u” = “y”, sustituye “y” por “u”.Resuelve “u” y sustituye “u” por “du/dx”.Separa las variables para poner “u” en un lado y “x” en el otro. Integrar ambos lados con respecto a “x”, y luego resolver para “u”.Como “u”=Q(x)-P(x)y”, volver a sustituir “u” por “Q(x)-P(x)y”.Resolver para “y” en términos de “x” para encontrar la solución general. Estos pasos pueden ser difíciles de recordar y complicados de seguir, pero la clave es eliminar todos los valores de “y”, “y” y “x” y sustituirlos por “u” y “u”. Si consigues que la ecuación quede completamente en términos de “u” y “u”, el resto del problema debería encajar.

Ecuaciones diferenciales con cambio de variables

Una ecuación diferencial lineal homogénea de primer orden es una ecuación de la forma \ds y’ + p(t)y=0\) o equivalentemente \ds y’ = -p(t)y\text{.})Ya hemos visto una ecuación diferencial lineal homogénea de primer orden, a saber, el modelo simple de crecimiento y decaimiento \ds y =ky\text{.})

Como se puede adivinar, una ecuación diferencial lineal no homogénea de primer orden tiene la forma \ds y’ + p(t)y = f(t)\text{.}) No sólo está estrechamente relacionado en forma a la ecuación lineal homogénea de primer orden, podemos utilizar lo que sabemos acerca de la resolución de ecuaciones homogéneas para resolver la ecuación lineal general.

Vamos a discutir ahora cómo podemos encontrar todas las soluciones de una ecuación diferencial lineal no homogénea de primer orden. Supongamos que \(y_1(t)\Ny \N(y_2(t)\Nson soluciones de \N(\ds y’ + p(t)y = f(t)\Ntext{.}) Dejemos que \ds g(t)=y_1-y_2text{.}) Entonces

En otras palabras, \(\ds g(t)=y_1-y_2) es una solución de la ecuación homogénea \(\ds y’ + p(t)y = 0text{.}\} Dando la vuelta a esto, cualquier solución de la ecuación lineal \(\ds y’ + p(t)y = f(t)\text{,}) llámese \(y_1\text{,}) puede escribirse como \(y_2+g(t)\text{,}) para algún \(y_2\) particular y alguna solución \(g(t)\) de la ecuación homogénea \(\ds y’ + p(t)y = 0\text{. }\) Como ya sabemos encontrar todas las soluciones de la ecuación homogénea, encontrar una sola solución de la ecuación \ds y’ + p(t)y = f(t)\) nos dará todas ellas.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad