Saltar al contenido

Sistemas de ecuaciones no lineales

junio 8, 2022

Sistema de ecuaciones diferenciales

Un sistema de ecuaciones no lineales es un sistema de dos o más ecuaciones en dos o más variables que contiene al menos una ecuación que no es lineal. Recordemos que una ecuación lineal puede tomar la forma [latex]Ax+By+C=0[/latex]. Cualquier ecuación que no pueda escribirse de esta forma es no lineal. El método de sustitución que utilizamos para los sistemas lineales es el mismo que utilizaremos para los sistemas no lineales. Resolvemos una ecuación para una variable y luego sustituimos el resultado en la segunda ecuación para resolver otra variable, y así sucesivamente. Sin embargo, hay una variación en los posibles resultados.

[latex]\N-empieza{alinear}&x-y=-1 \\N – &x=y – 1 && \text{resolver para }x. \\ Y = izquierda (y – 1 derecha) + 1 && \text{Sustituir la expresión para x. \\ Y=Izquierda(Y^2}-2Y+1D) +1 y… \\ &y={y}^{2}-2y+2 \\N-[3mm] &0={y}^{2}-3y+2 && \text{{puesta} igual a 0 y resolver.} |0=Izquierda(y – 2\\NDerecha)\NIzquierda(y – 1\NDerecha) \NFin[/latex]

Resolviendo para [latex]y[/latex] da [latex]y=2[/latex] y [latex]y=1[/latex]. A continuación, sustituye cada valor de [latex]y[/latex] en la primera ecuación para resolver [latex]x[/latex]. Sustituye siempre el valor en la ecuación lineal para comprobar si hay soluciones extrañas.

Función no lineal

Un fabricante de monopatines introduce una nueva línea de tablas. El fabricante hace un seguimiento de sus costes, que es la cantidad que gasta para producir las tablas, y de sus ingresos, que es la cantidad que gana con las ventas de sus tablas. ¿Cómo puede determinar la empresa si obtiene beneficios con su nueva línea? ¿Cuántas tablas de skate deben producirse y venderse para obtener beneficios? En esta sección, consideraremos ecuaciones lineales con dos variables para responder a estas y otras preguntas similares.

Para investigar situaciones como la del fabricante de monopatines, tenemos que reconocer que estamos tratando con más de una variable y probablemente con más de una ecuación. Un sistema de ecuaciones lineales consiste en dos o más ecuaciones lineales formadas por dos o más variables, de manera que todas las ecuaciones del sistema se consideran simultáneamente. Para encontrar la solución única de un sistema de ecuaciones lineales, debemos encontrar un valor numérico para cada variable del sistema que satisfaga todas las ecuaciones del sistema al mismo tiempo. Algunos sistemas lineales pueden no tener solución y otros pueden tener un número infinito de soluciones. Para que un sistema lineal tenga una solución única, debe haber al menos tantas ecuaciones como variables. Aun así, esto no garantiza una solución única.

Resolver numéricamente sistemas de ecuaciones no lineales

Hemos aprendido a resolver sistemas de ecuaciones lineales con dos variables mediante gráficas, sustituciones y eliminaciones. Utilizaremos estos mismos métodos cuando veamos los sistemas de ecuaciones no lineales con dos ecuaciones y dos variables. Un sistema de ecuaciones no lineales es un sistema en el que al menos una de las ecuaciones no es lineal.

Al igual que con los sistemas de ecuaciones lineales, una solución de un sistema no lineal es un par ordenado que hace que ambas ecuaciones sean verdaderas. En un sistema no lineal, puede haber más de una solución. Lo veremos cuando resolvamos un sistema de ecuaciones no lineales mediante una gráfica.

Cuando resolvíamos sistemas de ecuaciones lineales, la solución del sistema era el punto de intersección de las dos rectas. Con los sistemas de ecuaciones no lineales, las gráficas pueden ser círculos, parábolas o hipérbolas y puede haber varios puntos de intersección, y por tanto varias soluciones. Una vez identificadas las gráficas, visualiza las diferentes formas en que las gráficas podrían intersecarse y, por tanto, cuántas soluciones podría haber.

Solucionador de sistemas de ecuaciones no lineales

El cometa Halley (Figura \(\PageIndex{1})) orbita el sol aproximadamente una vez cada \(75\) años. Su trayectoria puede considerarse una elipse muy alargada. Otros cometas siguen trayectorias similares en el espacio. Estas trayectorias orbitales pueden estudiarse mediante sistemas de ecuaciones. Estos sistemas, sin embargo, son diferentes de los que hemos considerado en la sección anterior porque las ecuaciones no son lineales.

En esta sección, consideraremos la intersección de una parábola y una recta, un círculo y una recta, y un círculo y una elipse. Los métodos para resolver sistemas de ecuaciones no lineales son similares a los de las ecuaciones lineales.

Un sistema de ecuaciones no lineales es un sistema de dos o más ecuaciones en dos o más variables que contiene al menos una ecuación que no es lineal. Recordemos que una ecuación lineal puede tener la forma \(Ax+By+C=0\). Cualquier ecuación que no pueda escribirse de esta forma es no lineal. El método de sustitución que utilizamos para los sistemas lineales es el mismo que utilizaremos para los sistemas no lineales. Resolvemos una ecuación para una variable y luego sustituimos el resultado en la segunda ecuación para resolver otra variable, y así sucesivamente. Sin embargo, hay una variación en los posibles resultados.

Esta web utiliza cookies propias para su correcto funcionamiento. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad