Solucionador de ecuaciones cuadráticas
Este artículo trata sobre las ecuaciones algebraicas de grado dos y sus soluciones. Para la fórmula utilizada para encontrar soluciones a dichas ecuaciones, véase Fórmula cuadrática. Para funciones definidas por polinomios de grado dos, véase Función cuadrática.
término. Los números a, b y c son los coeficientes de la ecuación y pueden distinguirse llamándolos, respectivamente, coeficiente cuadrático, coeficiente lineal y término constante o libre[1].
Los valores de x que satisfacen la ecuación se denominan soluciones de la misma, y raíces o ceros de la expresión en su lado izquierdo. Una ecuación cuadrática tiene como máximo dos soluciones. Si sólo hay una solución, se dice que es una raíz doble. Si todos los coeficientes son números reales, hay dos soluciones reales, o una única raíz doble real, o dos soluciones complejas. Una ecuación cuadrática siempre tiene dos raíces, si se incluyen las raíces complejas; y una raíz doble se cuenta por dos. Una ecuación cuadrática se puede descomponer en una ecuación equivalente
B 2 4ac
h, b, g, f y c son constantes. Si a = b(≠ 0 ) y h = 0, entonces la ecuación anterior se convierte enax\(^{2}\) + ay\(^{2}\) + 2gx + 2fy + c = 0⇒ x\(^{2}\) + y\(^{2}\) + 2 ∙ \frac{g}{a}\) x + 2 ∙ \frac{a}\) y + \frac{c}{a}\) = 0, (Ya que, a ≠ 0)⇒ x(^{2}\N) + 2 ∙ x ∙ \N(\frac{g}{a}\N) + \N(\frac{g^{2}\Na^{2}}) + y(^{2}\N) + 2. y . \(\frac{f}{a}) + \(\frac{{2}}{a^{2}}) = \(\frac{g^{2}}{a^{2}}) + \(\frac{{2}}{a^{2}}) – \(x + \frac{g} {a}))\frac(^2}) + (y + \frac{f} {a}))\frac(^2}) = \frac{1} {a}}cuadrado{g^2} + f^{2} – ca})^{2})
Fórmula cuadrática c
Las ecuaciones cuadráticas son expresiones algebraicas de segundo grado y son de la forma ax2 + bx + c = 0. La palabra “cuadrática” deriva de la palabra “Quad” que significa cuadrado. En otras palabras, una ecuación cuadrática es una “ecuación de grado 2”. Hay muchos escenarios en los que se utiliza una ecuación cuadrática. ¿Sabías que cuando se lanza un cohete, su trayectoria se describe mediante una ecuación cuadrática? Además, una ecuación cuadrática tiene numerosas aplicaciones en física, ingeniería, astronomía, etc.
Las ecuaciones cuadráticas son ecuaciones de segundo grado en x que tienen como máximo dos respuestas para x. Estas dos respuestas para x también se llaman raíces de las ecuaciones cuadráticas y se designan como (α, β). Aprenderemos más sobre las raíces de una ecuación cuadrática en el siguiente contenido.
Una ecuación cuadrática es una ecuación algebraica de segundo grado en x. La ecuación cuadrática en su forma estándar es ax2 + bx + c = 0, donde a y b son los coeficientes, x es la variable y c es el término constante. La primera condición para que una ecuación sea cuadrática es que el coeficiente de x2 sea un término distinto de cero (a ≠0). Para escribir una ecuación cuadrática en forma estándar, se escribe primero el término de x2, seguido del término de x y, por último, se escribe el término constante. Los valores numéricos de a, b, c generalmente no se escriben como fracciones o decimales sino que se escriben como valores integrales.
Fórmula cuadrática
Los polinomios de segundo grado o trinomios se estudian y utilizan principalmente en muchos campos de las matemáticas. Ya sea en el análisis, en el álgebra o incluso en la teoría de los números, en la teoría de la probabilidad o en la geometría, estos polinomios son omnipresentes.
Los estudiantes de secundaria se encuentran con estos polinomios sin darse cuenta realmente en el momento en que descubren las primeras identidades notables. Más tarde, descubrió la función cuadrada. Pero las cosas empiezan a ponerse interesantes cuando se encuentran con la forma canónica, un encuentro no siempre muy agradable para la mayoría de los estudiantes. No obstante, hay que admitir que la forma canónica es una mezcla entre las identidades notables y el discriminante que los alumnos descubrirán mucho más tarde. Creo que la dificultad para entender la forma canónica radica en que los alumnos no han visto antes el discriminante. En cualquier caso, para mí, el encuentro del trío de identidades notables, forma canónica y discriminante tuvo un gran impacto en mi pasión por las matemáticas. Por eso, en una sucesión de vídeos, trataré un poco de teoría, pero sobre todo de práctica sobre cómo se pueden abordar ejercicios de ecuaciones cuadráticas y sistemas de suma y producto de ecuaciones.